Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Multi-task control for VSC-HVDC power and frequency control

Giddani, O.A. and Abbas, Abdelaziz Y.M. and Adam, Grain P. and Anaya-Lara, Olimpo and Lo, K.L. (2013) Multi-task control for VSC-HVDC power and frequency control. International Journal of Electrical Power and Energy Systems, 53. 684–690. ISSN 0142-0615

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A robust control strategy for a VSC–HVDC transmission scheme between two ac networks is presented. The VSC converters at both ends of the dc line are equipped with a multi-task controller that facilitates: power management between the two ac systems, provision of independent reactive power control at the point of common couplings (PCCs) and frequency regulation at the sending-end side. The paper investigate the utilization of VSC–HVDC system to provide frequency regulation to an ac network; this is useful for networks with high penetration of renewables (e.g. wind), and nuclear generation. The proposed control strategies for the VSCs are presented in detail, investigating further the tuning method for the proper operation of the inner controllers. The robustness of the control system is tested under large disturbances. The study is conducted in Matlab/Simulink and results that substantiate the dynamic performance of the VSC–HVDC with the proposed control are thoroughly discussed.