
This version is available at https://strathprints.strath.ac.uk/59818/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
The blocks, meanwhile, are chronologically connected by a series of cryptographic hashes (Damgard, 1990). These are unique secure identifying numbers, which act as fingerprints of the data contained within the blocks. Each block contains the fingerprint of the previous block, meaning that the data in each block can be used to ensure the previous block has not been altered. This fingerprint element is what joins the blocks together, creating a chain.

These chronological blocks can hold multiple transaction records. They are distributed through the nodes of the blockchain network which are carrying out the processing (Decker & Wattenhofer, 2013). In a public blockchain network, anyone may run their own node to process and validate transactions. The blocks are verified by the cryptographic hash which cannot be easily changed or falsified (Peters et al., 2015). If there is a change to any part of the data, the hash will appear to be totally different. The sequence is illustrated in Figure 1 below.

![Figure 1: The mechanism of securing transactions on blockchain](image)

The inclusion of the cryptographic hash makes fraud difficult. It is the key innovation that makes a blockchain secure. It solves the problem of the order of previous digital transactions being manipulated by a malicious party seeking to defraud others. Were someone able to alter the order of previous transactions, they could insert a transaction before a payment to another individual, draining their funds. This would result in the latter payment failing, leaving the recipient unpaid. Blockchain eliminates this so called “double spending problem”, according to Hoepman (2007).

The unique hash identifiers in a blockchain will show as being different if any of the transactions within a block are modified or tampered with. Figure 2 illustrates how the hash of a block is used within the header of the next block to verify the history of events. The process of checking that transactions have not been modified is called validation. Buyya et al (2008) illustrate this works within decentralised networks, in other words over the internet. In this way, financial payments can be carried out, with transactions sent and stored on the internet using multiple online validation nodes and participants in the network. Blockchains are therefore sent to and stored on distributed ledgers. There are multiple copies of it kept by multiple parties, and any may verify the records at any time.

![Figure 2: Illustration of the chaining of blocks, through the incorporation of the previous block hash in the next block header. This prevents alteration of previous blocks’ contents, and preserves the order of blocks, and therefore transactions](image)
The reason for the attention afforded to blockchain is that it has the potential to evolve into the next generation of the internet for financial processes. This is because it can facilitate the exchange of assets or information between various parties without the need for a trusted intermediary. Several features of blockchain technology make it particularly attractive. These include the immutability of digital records, and the resulting traceability and proof of ownership. The security and privacy of blockchains have captured the attention of financial market participants. With controlled access to distributed ledgers, financial transactions can be stored on the internet rather than simply on the server of individual banks. This makes them less dependent on legacy systems.

CRYPTOGRAPHY AT THE CORE

Security is at the core of blockchain, and as such can also be used to create digital currency. This is because the cryptographic hashes can not only be used for connecting the blocks but also for confirming the validity of blocks containing transactions. Cryptocurrencies such as Bitcoin, Litecoin and Peercoin use this process, referred to as mining, as the basis of their security. The process of mining is used to ensure that blocks added to the ledger require a predictable amount of work to be carried out. This prevents any one party from dominating the blockchain by having a monopoly over the creation of new blocks. To reward miners, the successful creation of a new block results in the award of some new bitcoins to the miner. The limited supply and proof of work add to the 'attraction' of the use of such digitally based currencies. There are a few hundred such cryptocurrencies, called altcoins. Whether any of these will become a global success is debatable, but clearly there is potential for the world to move to a digital currency in the future, now that the technology is available.

Bitcoin was the first blockchain use in currency transactions (Nakamoto, 2008). Bitcoin, as a digital cryptocurrency, is secured by cryptography, rather than legislation, and is therefore operated independent from national or international regulation by governments or authorities, although parties participating in the network may be regulated within their own jurisdictions.

As said, cryptography is one of the core features of blockchain. The other is peer-to-peer networking, explained by Koshy et al (2014). They point out it solves the communication protocol known as the Byzantine Generals' Problem that was identified by Lamport et al (1982). This is what is termed a logical agreement problem and is based around how multiple parties can reach a consensus without any party being able to mislead the others. In the context of blockchain, the agreement relates to the transactions. Feldman and Micali (1997) demonstrated that by using this protocol, no network user can 'betray' others unless more than half of network participants take a control of the network. This is what is termed a '51% attack.' This risk is reduced through the distributed nature of the blockchain network, allowing everyone to participate.

One of the advantages of blockchain is that it enables what have become called 'Smart contracts' to be encoded within blocks, and executed automatically and impartially by software (Kosha, A. et al., 2016). Train commuters may be familiar with the basic building blocks of a smart contract, as this is similar to how their journey is recorded, or their season ticket validated, when they touch their card on the entrance sensor, as illustrated by Poon & Chau (2001). In effect, a smart contract instructs, verifies and enforces a set of contractual instructions. Koshy et al (2014) meanwhile showed that emerging smart contract systems can now allow mutually distrustful counterparties to safely transact financial settlements without a trusted intermediary.

Another advantage of blockchain usage is that it can potentially reduce operational expenses for the processing of large volumes of transactions, by bringing into effect newer and more modern processes, thereby hopefully reducing fraud. It can have a dramatic effect in reducing operational costs in financial incumbents. Traditional financial incumbents are testing and evaluating blockchain for this rather than its attraction as a decentralised structure. Either way, the technology is becoming more widespread.

In 2015 the earliest adopters of blockchain launched a consortium for blockchain technology named R3 CEV. This consortium has gained momentum and has the goal of applying such distributed ledger technologies in financial organisations. It has focused on daily transactions and the sharing of a common distributed ledger system.

The other key initiative is Ethereum. This was first described in 2013 and was officially launched on 30 July 2015. Ethereum is a platform designed to run smart contracts over a decentralised network of peers. A smart contract in the context of Ethereum is described as "an application that runs exactly as programmed without downtime, censorship, fraud or third party interference". The Ethereum project's mission is to fully decentralise the internet. It provides a platform on top of which anyone can create a decentralised internet service secured by the blockchain. Ethereum makes it easy to launch blockchain-based applications without needing to create a new blockchain protocol.

Blockchain technology allows for a new model of consensus and validation of records/events, ensuring that all participants can reach a compatible and congruent view of previous transactions. The ability to validate transfers or transactions cryptographically provides opportunities for enhancing the security of current trading and settlement platforms. In certain circumstances, such as for high value or priority transfers or settlements, the ability to prove cryptographically that an attempt was made to initiate a transfer at a given time would assist in ensuring the correct relative ordering of settlements, or allow a party to prove the existence of a signed transaction at a certain time, such as to comply with contractual obligations or similar.

THE ROLE OF TIME-STAMPING

The legacy international settlement system is called the SWIFT network. This is not without its security and authentication issues and is becoming very dated. By moving to a model of a blockchain, where transactions are broadcast and validated by others, a more robust security model can be adopted. In that way transfers can be cryptographically verified against the bank of origin. In the event of the transaction being improperly signed, the cryptographic validation will fail, and the other banks will detect this conflict, refusing to honour the transaction, and alerting the issuing bank as to the potential for a compromise of their systems.

One of the challenges of blockchain for banks and financial institutions is that it does not inherently provide accurate time-stamps of transactions. While the blockchain construct gives an immutable history, and verifiable order of events, individual events themselves can only be validated as existing at or after a given point; inclusion within blocks is not guaranteed, and if two rival blocks were produced at the same time, this will result in a clash causing one block to appear before the other. The transactions from the second block will still be included in the network, but may appear at a time later than would otherwise be indicated from their position within the chain.

More generally, within a blockchain, the content need not only be financial transactions of a currency-derived commodity; assets or other property could have verifiable and accountable ownership transfers.
carried out within a blockchain. For example, house sales could be carried out on a form of blockchain, allowing government to ensure that all transfers are properly registered and thus that taxes are correctly paid. In addition, such a construct could facilitate interesting future opportunities to make doing business online easier. With such a registry, a user could, in theory, cryptographically prove ownership of their own home within seconds, allowing a lender to offer them a secured loan immediately. Tenancies could be agreed digitally, with a blockchain used to identify ‘rogue’ unregistered landlords, since tenants would lodge their contract and deposit via the blockchain. Unauthorised subletting could be similarly detected.

One fallacy about blockchain comes from the perception that exposing transaction data over the internet is insecure. Blockchains need not be fully exposed to the public. An entirely private blockchain is possible. It could be held between a group of mutually trusting entities such as banks. Alternatively, a hybrid blockchain is possible, whereby anyone may read the blockchain, but only authorised members may append to it, perhaps for transfers of restricted assets. The other fallacy is that it is insecure because unknown and faceless programmers are developing it. This overlooks the power of group software development, which historically has proved superior to single code production, and the ability for anyone to inspect open source code for quality and correctness.

Critically, one should also point to both the large data demands of blockchain, as well as the amount of processing power required to create cryptographic hashes and validate the transactions. These two areas, blockchains biggest weaknesses, require further academic and practical investigation.

In conclusion, the security, reliability and effectiveness of blockchain will result in more efficient and cheaper financial transactions. We recommend that financial institutions evaluate its adoption. If this happens, blockchain has the potential to significantly transform banking through new models for the processing of transactions in a distributed manner, rather than the current more centralised approach.

BIBLIOGRAPHY


