29th Scottish Fluid Mechanics Meeting 20th of May 2016

Flow behaviour of vitreous humour biofluid during saccadic eye movements

Andreia F. Silva^{a,b}, Francisco Pimenta^b, Manuel A. Alves^b, Mónica S. N. Oliveira^a andreia.silva@strath.ac.uk

^a Department of Mechanical and Aerospace Engineering , University of Strathclyde, Glasgow G1 1XJ, UK

^b CEFT, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Centro de Estudos de Fenómenos de Transporte Transport Phenomena Research Center

Outline

University of Strathclyde Engineering

- Background;
- Motivation;
- Experimental part:
 - Experimental methodology;
 - Experimental results;
- Numerical part:
 - Numerical methodology;
 - Numerical results;
- Conclusions.

Background

Saccadic: a rapid movement of the eye between fixation points.

Background **University of** Strathclyde Engineering **Saccadic**: a rapid movement of the eye between fixation points. Until 200 msec Duration Right **Final position** Amplitude 10°< α < 50° Initial position Left Time Angular velocity up to 900°/s

Flow behaviour of vitreous humour during saccadic eye movements

Background

Background

Vitreous Humour is only produced during the embryonic stage, and becomes progressively liquefied with age.

2. Just a few experimental and numerical studies about the rheology and the flow properties of the biofluid have been reported.

Motivation

Some of the eye diseases are related with changes in VH:

- Posterior vitreous detachment;
- Retinal detachment;
- Retinal tears;
- Floaters.

http://www.retinaeye.com/retin aldetachment.html

http://retinagallery.com/displayi mage.php?album=475&pid=4790 #top_display_media

Motivation

Some of the eye diseases are related with changes in VH:

- Posterior vitreous detachment;
- Retinal detachment;
- Retinal tears;
- Floaters.

http://www.retinaeye.com/retin aldetachment.html

http://retinagallery.com/displayi mage.php?album=475&pid=4790 #top_display_media

To treat some of the diseases:

- Silicone Oils;
- Densiron 68.

Motivation

Some of the eye diseases are related with changes in VH:

- Posterior vitreous detachment;
- Retinal detachment;
- Retinal tears;
- Floaters.

http://www.retinaeye.com/retin aldetachment.html

http://retinagallery.com/displayi mage.php?album=475&pid=4790 #top_display_media

To treat some of the diseases:

- Silicone Oils;
- Densiron 68.

Better understanding of the VH and pharmaceutical substitutes:

- Rheology;
- Flow dynamics.

Experimental methodology

Pharmacological fluids samples

Experimental methodology

Pharmacological fluids samples

Vitreous Humour samples

Specimen: healthy New Zealand white rabbit; Age: 18 ± 3 weeks; Weight: between 2.8 and 3 kg.

Experimental methodology

Pharmacological fluids samples

Silicone oils

Densiron 68

Vitreous Humour samples

Specimen: healthy New Zealand white rabbit; Age: 18 ± 3 weeks; Weight: between 2.8 and 3 kg.

Temperature: 37°

Pharmacological fluids

Densiron 68

All the fluids behave as Newtonian fluids under steady shear, with constant viscosity.

Pharmacological fluids

Silicone oils

Densiron 68

All the fluids behave as Newtonian fluids under steady shear, with constant viscosity.

4 mode Giesekus model

Saccadic movements

$$\theta(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^{5}$$

¹ David *et al.* [Physics in Medicine and Biology, 1998, 43, 1385-99] ² Repetto *et al.* [Physics in Medicine and Biology, 2006, 50,4729–43]

Saccadic movements

$$\theta(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4 + c_5 t^{5-1,2}$$

¹ David *et al.* [Physics in Medicine and Biology, 1998, 43, 1385-99] ² Repetto *et al.* [Physics in Medicine and Biology, 2006, 50,4729–43]

Eye Shape

Eye Shape

Solidworks model

Main dimensions

Numerical results

• The pharmacological fluids used in eye surgery exhibit a constant viscosity;

- The pharmacological fluids used in eye surgery exhibit a constant viscosity;
- Vitreous humour, both gel and the liquefied phase behave as viscoelastic fluids;

- The pharmacological fluids used in eye surgery exhibit a constant viscosity;
- Vitreous humour, both gel and the liquefied phase behave as viscoelastic fluids;

• The flow dynamics of the biofluid in the eye cavity is strongly related with the viscosity of the fluid;

- The pharmacological fluids used in eye surgery exhibit a constant viscosity;
- Vitreous humour, both gel and the liquefied phase behave as viscoelastic fluids;

- The flow dynamics of the biofluid in the eye cavity is strongly related with the viscosity of the fluid;
- Vitreous humour flow dynamic plays an important role to keep a stable biological structure of the major components of the fluid.

29th Scottish Fluid Mechanics Meeting 20th of May 2016

Thanks for your attention

Centro de Estudos de Fenómenos de Transporte

Transport Phenomena Research Center

