Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids

Zhang, Y.L. and Gorman, Daniel G. and Reese, J.M. (2001) A finite element method for modelling the vibration of initially tensioned thin-walled orthotropic cylindrical tubes conveying fluids. Journal of Sound and Vibration, 245 (1). pp. 93-112. ISSN 0022-460X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a method for the dynamic analysis of initially tensioned orthotropic thin-walled cylindrical tubes conveying steady fluid flow, based on Sanders' non-linear theory of thin shells and the classical potential flow theory. The method is relatively straightforward, using a hydrodynamic pressure formulation derived from the velocity potential, a dynamic coupling condition at the fluid-structure interface and two-noded frustum elements to assess the dynamic behaviour of these tube/fluid systems accurately. A non-linear strain-displacement relationship is also deployed to derive the geometric stiffness matrix due to the initial stresses and hydrostatic pressures. The equations of motion for the tube and fluid are solved by a finite element method, and this is validated by comparing the natural frequencies obtained with other published results. The influence of material properties, fluid flow velocities and initial axial tensions on the natural frequencies is then illustrated and discussed.