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Vibration analysis of a circular disc backed by a
cylindrical cavity

D G Gorman1*, J M Reese2, J HoraÂ cek3 and K Dedouch4
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2 Department of Mechanical Engineering, King’s College London, UK
3 Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
4 Department of Mechanics, Faculty of Mechanical Engineering, Czech Technical University, Prague, Czech Republic

Abstract: This paper describes the free vibration analysis of a thin disc vibrating and interacting with
an acoustic medium contained in a cylindrical duct. The eVects of structural±acoustic coupling are
studied by means of an analytical±numerical method that is based upon classical theory and the
Galerkin method. The coupling eVects are discussed, and results obtained from the analysis are
compared with corresponding values obtained both experimentally and from a ®nite element
analysis. There is good agreement between the three sets of results.

Keywords: vibration, plates, acoustic, interaction

NOTATION

a peripheral radius of disc/acoustic cavity
c1 speed of acoustic wave propagation
E Young’s modulus
f natural frequency (Hz)
Jm; Im; Ym Bessel functions, order m
l depth of acoustic cavity
m number of circular waves
q number of radial waves in acoustic

medium
r radial coordinate
s number of radial waves on disc
w lateral vibratory de¯ection of disc
x axial distance from base of acoustic

cavity

£ circumferential coordinate

¸ Poisson’s ratio
»d disc density

»f ¯uid density

© velocity potential functions

! natural frequency (rad/s)

1 INTRODUCTION

The general analysis of acoustic/structural vibration
interaction problems is presented in references [1] and
[2], where in®nite series solutions for the acoustic pres-
sure and the displacement of the structure are derived
from a fundamental solution of the uncoupled problems,
namely vibration of the structure in vacuo, and acoustic
resonance in a closed cavity with undeformable walls.
These basic models were extended and applied to prob-
lems involving rectangular plates backed by rectangular
cavities [3±6]. More recently, a study has been performed
on the case of a circular membrane vibrating in contact
with a compressible ¯uid contained in both a closed
and open cylindrical cavity [7]. One of the authors of
reference [7], Bhat, at an earlier stage considered the
speci®c case of an Indian musical drum [8]. With respect
to the case of vibro-acoustic eVects involving a circular
plate, Lee and Singh [9] analysed the characteristics of
the acoustic radiation emitted from a vibrating circular
plate in free space. More recently, Bauer and Chiba
[10] considered the case of a circular plate backed by a
cylindrical cavity; however the ¯uid contained within
the cavity was assumed to be viscous and incompressible.

In the present paper the natural frequencies and mode
shapes of a ¯exible disc mounted on top of a cylindrical
cavity which has rigid walls and base will be examined.
The cavity contains inviscid and compressible ¯uid. The
static inplane pre-stress within the disc is not taken
into account in this instance. The disc is modelled as a
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thin-walled elastic circular plate and it is assumed to be
clamped around the edge of the top of the cavity.

A theoretical±numerical analysis (TNA) is developed,
which is based upon the equations describing the vibra-
tion characteristics of the disc in vacuo and the potential
¯ow theory describing the free vibration of the compres-
sible ¯uid contained in the cylindrical cavity. Determina-
tion of the vibration characteristics describing the
coupled motion of the structure and compressible ¯uid
is then achieved by consideration of the boundary con-
ditions on the surface of the disc and via the Galerkin
method. The Galerkin method implies that the normal
mode shapes of the coupled system are similar to those
of the disc in vacuo. Results are then compared with cor-
responding values of natural frequency obtained using
the ®nite element (FE) code ANSYS and laboratory
experiments. Consequently, the study presents the
opportunity to appraise the performance of a commer-
cial ®nite element code, such as ANSYS, when dealing
with a vibroacoustic problem in which the structural
and ¯uid elements are deployed simultaneously.

2 THEORETICAL ANALYSIS

2.1 The acoustic cavity

The inviscid compressible ¯uid inside the cylindrical
duct, schematically shown in Fig. 1, is described by the
following equation in cylindrical coordinates for the per-
turbed velocity potential, © :

@2©

@r2
‡ 1

r

@©

@r
‡ 1

r2

@2©

@£2
‡ @2©

@x2
ˆ 1

c2
1

@2©

@t2
…1†

where c1 is the speed of sound. The harmonic solution is
assumed to be of the form

© ˆ H…x† ¢ Q…r†…cos m£† ei!t …2†

where m ˆ 0; 1; 2; . . . . Separation of variables therefore
yields

H 00

H
ˆ m2

r2
¡ !2

c2
1

Á !

¡ Q 00

Q
‡ 1

r

Q 0

Q

³ ´
² §k2 …3†

where

H 00 ˆ d2H

dx2
; Q 00 ˆ d2Q

dr2
and Q 0 ˆ dQ

dr

Considering H 00=H ˆ ‡k2, where k2 > 0, yields

H…x† ˆ A cosh kx ‡ B sinh kx …4†

If, however, k2 were less than zero, equation (4) would be

H…x† ˆ A cos kx ‡ B sin kx

The physical boundary condition

@©

@x

­­­­
xˆ 0

ˆ 0 …5†

implies that B ˆ 0; therefore

H…x† ˆ A cosh kx …6†

From the Bessel equation (3),

Q 00 ‡
1

r
Q 0 ‡ !2

c2
1

‡ k2

Á !

¡
m2

r2

" #

Q ˆ 0

It then follows that

Q…r† ˆ CJm…¶r† ‡ DYm…¶r† …7†

where

¶ ˆ k2 ‡ !2

c2
1

Á !1=2

…8†

and D ˆ 0 since Q must be ®nite when r ! 0. Thus, the
following can be written:

Q ˆ CJm…¬·r† …9†

where ·r ˆ r=a and ¬ ˆ a¶. Since there is no radial com-
ponent of the ¯uid velocity at ·r ˆ 1, for a given value
of m there is a set of roots ¬ ˆ ¬m;q…q ˆ 1; 2; 3; . . .†,
where J 0

m…¬† ˆ 0 [11]. Therefore, from equation (8),

k2 ˆ k2
m;q ˆ 1

a2
¬2

m;q ¡ !a

c1

³ ´2
" #

…10†

and ®nally

© ˆ
X‡1

m ˆ0

X‡1

q ˆ1

©m;q…x; ·r; £; t† …11†
Fig. 1 Schematic of the system under investigation

1304 D G GORMAN, J M REESE, J HORAÂ CEK AND K DEDOUCH

Proc Instn Mech Engrs Vol 215 Part C C09300 IMechE 2001 at University of Strathclyde Library on June 11, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


where

©m;q ˆ Dm;q…cosh km;qx†bJm…¬m;q ·r†…cos m£† ei!tc …12†

and Dm;q are unknown constants given by the condition
at x ˆ l. The compressible ¯uid pressure distribution is
®nally given by

p ˆ ¡»f

@©

@t
…13†

2.2 Vibration of a thin disc in vacuo

The governing equation for the lateral vibration of a thin
disc in vacuo is [12]:

@2

@r2
‡ 1

r

@

@r
‡ 1

r2

@2

@£2

Á !2

w ˆ ¡ »d

D0

³ ´
@2w

@t2
…14†

where D0 ˆ Eh2=‰12…1 ¡ ¸2†Š, D ˆ D0h. For a peripher-
ally clamped circular plate,

w…a† ˆ @w

@r

­­­­̂
rˆ a

ˆ 0 …15†

and, for a given value of m, the radial mode shape of
vibration is

Wm…r† ˆ AmJm…¬̂m;sr† ‡ CmIm…¬̂m;sr† …16†

where ¬̂m;s are roots (s) of the equation

Jm…¬̂m;sa†I 0
m…¬̂m;sa† ¡ Im…¬̂m;sa†J 0…¬̂m;sa† ˆ 0 …17†

Introducing ¹m;s ˆ ¬̂m;sa, the natural frequencies of the
disc in vacuo are

!m;s ˆ ¹2
m;s

1

a2

������
D0

»d

s

…18†

and the modes of vibration are

Wm;s…r† ˆ ¡ Im…¹m;s†
Jm…¹m;s†

Jm ¹m;s

r

a

± ²
‡ Im ¹m;s

r

a

± ²
…19†

2.3 The coupled solution

It follows from equations (11) and (12) that, for a ®xed
integer value m (the number of nodal diameters), the
potential is

©m…x; £; r; t† ˆ
X‡1

q ˆ1

Dm;q cosh …km;qx†Jm ¬m;q

r

a

± ²

£ cos …m£† ei!t …20†

and for the forced vibrations of the disc it is possible to

write

wm…r; £; t† ˆ Wm…r†cos …m£† ei!t …21†

where

Wm…r† ˆ
X‡ 1

sˆ 1

W0;m;sWm;s…r† …22†

and W0;m;s are unknown constants.
The impermeability condition

@©m

@x

­­­­
xˆ l

ˆ @wm

@t
…23†

yields

X‡ 1

q ˆ 1

Dm;qkm;q sinh …km;ql†Jm ¬m;q

r

a

± ²
ˆ i!Wm…r† …24†

At this stage the orthogonality relationship [13] is also
introduced:

…a

0
rJm ¬m;q1

r

a

± ²
Jm ¬m;q2

r

a

± ²
dr ˆ 0

for q1 6ˆ q2. For q1 ˆ q2 ˆ q,

…a

0
rJ 2

m

³
¬m;q

r

a

´
dr ˆ

³
a2

2

´³
1 ¡ m2

¬2
m;q

´
J 2

m…¬m;q† …25†

Therefore, multiplication of equation (24), which
describes the impermeability condition, by ‰rJm…¬m;qr=a†Š
and integration over the interval (0, a) gives

Dm;q ˆ
i!

„ a
0 rWm…r†Jm…¬m;qr=a†dr

km;q sinh …km;ql†J 2
m…¬m;qa2=2†…1 ¡ m2=¬2

m;q†
(26)

Therefore

©m…x; £; r; t†jxˆ l

ˆ i!l
X‡1

q ˆ1

cotgh …km;ql†
…km;ql†

Jm…¬m;qr=a†
…a2=2†…1 ¡ m2=¬2

m;q†J 2
m…¬m;q†

£ cos …m£† ei!t

…a

0
rWm…r†Jm ¬m;q

r

a

± ²
dr …27†

and

pm…r; £; x; t†jxˆ l ˆ ¡»f

@©m

@t

­­­­
xˆ l

ˆ »f l!
2 2

a2
cos …m£† ei!t

X‡ 1

q ˆ 1

pm;q…r†

(28)
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where

pm;q…r† ˆ
cotgh …km;ql†

…km;ql†
Jm…¬m;qr=a†

…1 ¡ m2=¬2
m;q†J 2

m…¬m;q†

£
…a

0
rWm…r†Jm ¬m;q

r

a

± ²
dr …29†

Substituting Wm(r) from equation (20) into the integrals„ a
0 rWm…r†Jm…¬m;q r=a†dr gives

…a

0
rWm;s…r†Jm ¬m;q

r

a

± ²
dr ˆ a2Jm…¬m;q†Im…¹m;s†Gm;s;q

(30)

where

Gm;s;q ˆ ¹m;s

¬2
m;q ‡ ¹2

m;s

I 0
m…¹m;s†

Im…¹m;s†
¡ ¹m;s

¬2
m;q ¡ ¹2

m;s

J 0
m…¹m;s†

Jm…¹m;s†
(31)

Therefore the pressure equation (28) becomes

pm…r; £; t†jx ˆ l

ˆ 2…»f l†!2 cos …m£† ei!t
X‡1

q ˆ1

cotgh …km;ql†
…km;ql†

£
Jm…¬m;q r=a†

…1 ¡ m2=¬2
m;q†Jm…¬m;q†

X‡ 1

sˆ 1

W0;m;sIm…¹m;s†Gm;s;q

(32)

For the disc in vacuo,

r4Wm;s…r† ˆ »d

D0

!2
m;sWm;s…r† …33†

and the substitutions of

wm…r; £; t† ˆ cos …m£† ei!t
X‡ 1

sˆ 1

W0;m;sWm;s…r† …34†

and pmjx ˆ l into the equation of motion describing the
vibrating disc interacting with the ¯uid, i.e.

r4w ˆ ¡ »d

D0

@2w

@t2
‡ p

D

­­­­
x ˆ l

…35†

yields

»d

D0

X‡ 1

sˆ 1

W0:m:s…!2
m;s ¡ !2†Wm;s…r† ˆ pm

D

­­­­
xˆ l

…36†

After substitutions of Wm;s and pm,

X‡ 1

s ˆ1

³
»d

D0

´
…!2

m;s ¡ !2†W0;m;s

£
µ

¡ Im…¹m;s†
Jm…¹m;s†

Jm

³
¹m;s

r

a

´
‡ Im

³
¹m;s

r

a

´¶

ˆ ¡2

³
»f l

D0h

´
!2

X‡1

sˆ 1

W0;m;s Im…¹m;s†
X‡1

q ˆ1

Cm;q…!†Gm;s;q

£
Jm…¬m;q r=a†

…1 ¡ m2=¬2
m;q†Jm…¬m;q†

…37†

where

Cm;q…!† ˆ ¡
cotgh …km;q l†

…km;q l† …38†

Multiplying equation (37) by ‰rJm…¬m;p r=a†Š and inte-
grating over the interval (0, a), the following equation
is obtained:

X‡ 1

s ˆ1

…!2
m;s ¡ !2†W0;m;s

…a

0
rJm

³
¬m;p

r

a

´

£
µ

¡ Im…¹m;s†
Jm…¹m;s†

Jm

³
¹m;s

r

a

´
‡ Im

³
¹m;s

r

a

´¶
dr

ˆ ¡2q!2
X‡1

s ˆ1

W0;m;s Im…¹m;s†
X‡1

q ˆ1

Cm;q…!†Gm;s;q

£
1

…1 ¡ m2=¬2
m;q†Jm…¬m;q†

£
…a

0
rJm

³
¬m;p

r

a

´
Jm

³
¬m;q

r

a

´
dr

where q ˆ »f l=»d h. After the integration has been per-
formed, the following equation is obtained:

X‡ 1

s ˆ1

…!2
m;s ¡ !2†W0;m;sIm…¹m;s†Gm;s;q Jm…¬m;q†

ˆ ¡ q!2
X‡ 1

sˆ 1

W0;m;sIm…¹m;s†Cm;q…!†Gm;s;q Jm…¬m;q†

(39)

which, upon rearranging, gives

X‡ 1

s ˆ1

W0;m;sIm…¹m;s‰…!2
m;s ¡ !2†Gm;s;q Jm…¬m;q†

‡ q!2Cm;q…!†Gm;s;q Jm…¬m;q†Š ˆ 0 …40†
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Expressing equation (40) in matrix form for ®xed m and
q, s ˆ 1; 2; . . . ; N gives

a11…!† a12…!† . . . a1N…!†

a21…!† a22…!† . . . a2N…!†

..

. ..
. ..

.

. . . aqs…!† . . .

..

. ..
. ..

.

aN1…!† aN2…!† . . . aNN…!†

2

666666666666664

3

777777777777775

·Wm;1

·Wm;2

..

.

·Wm;s

·Wm;N

2

666666666666664

3

777777777777775

ˆ

0

0

..

.

0

..

.

0

2

666666666666664

3

777777777777775

(41)

where

aqs…!† ˆ Jm…¬m;q†Gm;s;qf!2
m;s ¡ !2b1 ¡ qCm;q…!†cg

·Wm;s ˆ W0;m;sIm…¹m;s†

(42)

3 NUMERICAL AND EXPERIMENTAL
ANALYSIS

The ®nite element system ANSYS 5.4 [14] was used for
modal analysis of the model. The plate was modelled
by 8 £ 32 SHELL 63 ®nite elements. The acoustic
volume was modelled by 8 £ 32 £ 9 or 30 FLUID 30
space acoustic ®nite elements. Both types of elements
were coupled on the disc surface.

The experimental layout for the validation of the
results of the TNA and FE analysis is shown in Fig. 2.
The structural±acoustic system was excited by means of
a standard miniature electromagnetic shaker applied to
the disc. Natural frequencies, and associated mode
shapes, of the plate were obtained by the Chladni sand
technique, particularly when the mode of vibration was
predominantly structural. Similarly, acoustic resonance
of the air inside of the cylindrical container was detected,
particularly when the mode of vibration was predomi-
nantly acoustic, by microphones that were inserted and
®xed carefully into the base and side wall of the con-
tainer. In cases of strong structural±acoustic interaction
modes, both the sand and the microphones responded
and, depending upon the relative levels of each com-
ponent of response, the authors were required to make

 

 

 
  

 
  

 

 

 

 

 
 

 

Fig. 2 Layout of instrumentation and transducer
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a judgement as to whether the coupled mode was acous-
tically (ac/st) or structurally (st/ac) dominant. These
straightforward experiments were conducted for the
purpose of detecting resonance (assuming negligible
damping) conditions only.

4 NUMERICAL EXAMPLES

The parameters considered were as follows:

1. Circular plate
1. Radius
1. Thickness

a ˆ 0.038 m
h ˆ 0.00038 m

1. Young’s modulus
1. Density
1. Poisson’s ratio

E ˆ 2.1 £ 1011 Pa

»d ˆ 7800 kg/m3

¸ ˆ 0:3

2. Acoustic medium
1. Radius
1. Depth of cylinder

a ˆ 0.038 m
l ˆ 0.081 m and 0.255 m

1. Density of air
1. Sound velocity

»f ˆ 1:2 kg/m3

c1 ˆ 343:0 m/s

The lower natural frequencies of the uncoupled systems
calculated for the plate in vacuo and for the compressible
¯uid in a rigid cylindrical duct are listed in Table 1. The

calculated natural frequencies for the coupled systems
are presented in Table 2 for l ˆ 81 mm and in Table 3
for l ˆ 255 mm. The results calculated according to the
developed theory (TNA) are compared with the natural
frequencies calculated by the ANSYS ®nite element
package and those obtained from the experimental
investigation.

In the TNA solution, only the range up to N ˆ 3 in
matrix (41) was considered, i.e. the number of nodal
diameters was m ˆ 0, 1 and 2 as well as the number of
nodal inner circles s ˆ 0, 1, 2 except the clamped edge
at r ˆ a. The number of the inner nodal circular
planes for the pressure inside the cylinder is denoted by
q ˆ 0, 1. The percentage diVerences, " and µ, between
the natural frequencies computed according to the two
methods are de®ned by

" ˆ fTNA ¡ fEXP

fEXP

³ ´
£ 100%

and

µ ˆ fTNA ¡ fANSYS

fANSYS

³ ´
£ 100%

and the predominantly structural (st), acoustic (ac) or
coupled (ac/st and st/ac) modes of vibration are indi-
cated in Tables 2 and 3.

Table 2 Characteristics of the coupled system for l ˆ 81 mm (ac, acoustic; st, structural)

Number
Mode
…m; s; q†

TNA
(Hz)

ANSYS
(Hz)

Experimental
frequency
(Hz)

"
(%)

µ
(%)

1 0, 0, 0 (st) 675 673.6 675 ¡0.0 ¡0.25
2 1, 0, 0 (st) 1394 1387 1430 ¡2.50 ¡0.5
3 0, 0, 1 (ac) 2119 2130 2167 ¡2.2 ¡0.5
4 2, 0, 0 (st) 2289 2273 2216 ¡3.3 ¡0.7
5 0, 1, 0 (st) 2615 2595 2565 ¡1.9 ¡0.77
6 1, 0, 0 (ac) 2646 2659 Ð ¡Ð ¡0.49
7 1, 0, 1 (ac) 3388 3405 3488 ¡2.9 ¡0.5
8 1, 1, 0 (st) 3997 3953 3630 10 ¡1.1
9 0, 0, 2 (ac) 4237 4324 4236 ¡0.02 ¡2.0

10 2, 0, 0 (ac) 4388 4425 Ð ¡Ð ¡0.84

Table 1 Characteristics of the uncoupled systems

Acoustics in rigid duct

Clamped plate in vacuo l ˆ 255 mm l ˆ 81 mm

Number f (Hz) m; s f (Hz) m; s; q f (Hz) m; s; q

1 671.8 0, 0 672.5 0, 0, 1 2117 0, 0 ,1
2 1398 1, 0 1345 0, 0, 2 2645 1, 0, 0
3 2293 2, 0 2018 0, 0, 3 3388 1, 0, 1
4 2615 0, 1 2645 1, 0, 0 4234 0, 0, 2
5 3356 3, 0 2690 0, 0, 4 4387 2, 0, 0
6 4000 1, 1 4387 2, 0, 0 4871 2, 0, 1
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There was a relatively weak acoustic±structural
coupling for the cavity with depth l ˆ 81 mm. All
modes of vibration are predominantly structural or
acoustic and the natural frequencies in Table 2 are
close to the values for the uncoupled systems shown in

Table 1. In contrast, there is a strong acoustic±structural
coupling in the case of the longer cylindrical cavity,
l ˆ 255 mm, especially for the ®rst, second and seventh
modes of vibration (see Table 3). Several of the lowest
mode shapes of vibration calculated by ANSYS are
shown in Figs 3 to 8. In all cases the normalized acoustic
pressure amplitudes inside the cylindrical cavity and
normalized vibration amplitudes of the elastic disc are
shown by isolines. The main diVerence between the
®rst two modes is in the fact that the plate vibrates
with the pressure in phase (see Fig. 3) or in antiphase
(see Fig. 4). The higher modes are typically pre-
dominantly acoustic (Figs 5 and 7) or structural (Figs 6
and 8). The predominantly structural modes, shown
in Figs 6 and 8, are characterized by the observation
that the normalized pressure amplitudes inside the
cylindrical cavity decrease quickly with distance from
the vibrating plate. In general there is good agreement
between the TNA and experimental values, showing
the general capability of the method described in this
paper.

Table 3 Characteristics of the coupled system for l ˆ 255 mm

Number
Mode
…m; s; q†

TNA
(Hz)

ANSYS
(Hz)

Experimental
frequency
(Hz)

"
(%)

µ
(%)

1 0, 0, 1 (st/ac) 636.9 636.5 630 ¡1.1 ¡0.06
2 0, 0, 1 (ac/st) 707.7 707.5 685 ¡3.3 ¡0.03
3 0, 0, 2 (ac) 1347 1350 1348 ¡0.74 ¡0.22
4 1, 0, 0 (st) 1394 1388 1376 ¡1.3 ¡0.43
5 0, 0, 3 (ac) 2018 2027 2040 ¡1.1 ¡0.44
6 2, 0, 0 (st) 2289 2274 2170 ¡5.5 ¡0.66
7 0, 1, 4 (st/ac) 2607 2589 2596 ¡0.42 ¡0.7
8 1, 0, 0 (ac) 2645 2658 Ð ¡Ð ¡0.49
9 1, 0, 1 (ac) 2730 2742 2756 ¡0.94 ¡0.44

10 0, 1, 4 (ac/st) 2697 2714 2689 ¡0.3 ¡0.63
11 1, 0, 2 (ac) 2968 2980 2971 ¡0.1 ¡0.40

Fig. 3 f ˆ 636:5 Hz (m ˆ 0; s ˆ 0; q ˆ 1)

Fig. 4 f ˆ 707:5 Hz (m ˆ 0; s ˆ 0; q ˆ 1)

Fig. 5 f ˆ 1350 Hz (m ˆ 0; s ˆ 0; q ˆ 2)
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5 CONCLUSIONS

A new theoretical±numerical analysis, based upon a
combination of classical analysis and the Galerkin
approximation, has been developed for the calculation
of natural frequencies of a vibrating circular plate in
interaction with a closed volume of compressible ¯uid.
The analysis was validated by means of comparison
with experimental results and those from an ANSYS
®nite element model. Accurate values of natural fre-
quency were calculated by a simple iterative solution of
a 3 £ 3 matrix for modes of vibration containing up to
two nodal diametric lines on the circular plate.

This study has shown that in ¯uid±elastic systems
strong acoustic±structural coupling can exist if the
natural frequencies of the acoustic and structural sub-
systems are close and if the appropriate mode shapes
are a� ned (cf. the values for the ®rst uncoupled struc-
tural and acoustic modes in Table 1 and the ®rst two
modes listed in Table 3 for the coupled system). In this

case the coupled ¯uid±structural system has two natural
frequencies substantially diVerent from the frequencies
of the uncoupled acoustic and structural subsystems.
Corresponding mode shapes are neither acoustic nor
structural and the dynamics of such a system cannot be
studied by reference to the uncoupled subsystems.

Generally, even a light medium can signi®cantly alter
the spectrum of the natural frequencies of the structure,
and vice versa, i.e. a ¯exible wall of an acoustic volume
can signi®cantly alter the spectrum of acoustic
resonance.
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