Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Advancing age decreases pressure-sensitive modulation of calcium signaling in the endothelium of intact and pressurized arteries

Wilson, Calum and Saunter, Christopher D. and Girkin, John M. and McCarron, John G. (2017) Advancing age decreases pressure-sensitive modulation of calcium signaling in the endothelium of intact and pressurized arteries. Journal of Vascular Research, 53 (5-6). 358–369. ISSN 1018-1172

[img]
Preview
Text (Wilson-etal-JVR-2016-Advancing-age-decreases-pressure-sensitive-modulation-of-calcium)
Wilson_etal_JVR_2016_Advancing_age_decreases_pressure_sensitive_modulation_of_calcium.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (553kB) | Preview

Abstract

Aging is the summation of many subtle changes which result in altered cardiovascular function. Impaired endothelial function underlies several of these changes and precipitates plaque development in larger arteries. The endothelium transduces chemical and mechanical signals to changes in cytoplasmic calcium concentration to control vascular function. However, studying endothelial calcium signaling in larger arteries in a physiological configuration is challenging because of the requirement to focus through the artery wall. Here, pressure- and agonist-sensitive endothelial calcium signaling was studied in pressurized-carotid arteries from Young (3 months) and Aged (18 months) rats by imaging from within the artery using GRIN fluorescence microendoscopy. Endothelial sensitivity to acetylcholine increased with age. The number of cells exhibiting oscillatory calcium signals, and the frequency of oscillations, were unchanged with age. However,the latency of calcium responses was significantly increased by age. Acetylcholine-evoked endothelial calcium signals were suppressed by increased intraluminal pressure. However, pressure-dependent inhibition of calcium signaling was substantially reduced by age. While each of these changes will increase endothelial calcium signaling in age, decreases in endothelial pressure sensitivity may manifest as a loss of functionality and responsiveness in aging.