Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Advancing age decreases pressure-sensitive modulation of calcium signaling in the endothelium of intact and pressurized arteries

Wilson, Calum and Saunter, Christopher D. and Girkin, John M. and McCarron, John G. (2017) Advancing age decreases pressure-sensitive modulation of calcium signaling in the endothelium of intact and pressurized arteries. Journal of Vascular Research, 53 (5-6). 358–369. ISSN 1018-1172

[img]
Preview
Text (Wilson-etal-JVR-2016-Advancing-age-decreases-pressure-sensitive-modulation-of-calcium)
Wilson_etal_JVR_2016_Advancing_age_decreases_pressure_sensitive_modulation_of_calcium.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (553kB) | Preview

Abstract

Aging is the summation of many subtle changes which result in altered cardiovascular function. Impaired endothelial function underlies several of these changes and precipitates plaque development in larger arteries. The endothelium transduces chemical and mechanical signals to changes in cytoplasmic calcium concentration to control vascular function. However, studying endothelial calcium signaling in larger arteries in a physiological configuration is challenging because of the requirement to focus through the artery wall. Here, pressure- and agonist-sensitive endothelial calcium signaling was studied in pressurized-carotid arteries from Young (3 months) and Aged (18 months) rats by imaging from within the artery using GRIN fluorescence microendoscopy. Endothelial sensitivity to acetylcholine increased with age. The number of cells exhibiting oscillatory calcium signals, and the frequency of oscillations, were unchanged with age. However,the latency of calcium responses was significantly increased by age. Acetylcholine-evoked endothelial calcium signals were suppressed by increased intraluminal pressure. However, pressure-dependent inhibition of calcium signaling was substantially reduced by age. While each of these changes will increase endothelial calcium signaling in age, decreases in endothelial pressure sensitivity may manifest as a loss of functionality and responsiveness in aging.