Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Fertility-disrupting potential of synthetic peptides derived from the beta-subunit of follicle-stimulating hormone

Ferro, Valerie A. and Stimson, William H. (1998) Fertility-disrupting potential of synthetic peptides derived from the beta-subunit of follicle-stimulating hormone. American Journal of Reproductive Immunology, 40 (3). pp. 187-197. ISSN 1600-0897

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

PROBLEM: Hormone immunoneutralization is hampered by immunologic cross-reactivity caused by close-sequence homology between related molecules. One solution is to use smaller fragments to induce antibodies of greater specificity. METHOD OF STUDY: A number of peptides selected from beta-follicle-stimulating hormone (FSH) were conjugated to tetanus toxoid and were used to immunize female rats. The antisera were examined for FSH cross-reactivity by immunoassays and in an in vitro bioassay. RESULTS: In the immunoassays, the antisera did not react with FSH but did react with their respective peptides. In the bioassay, sera from VYKDPARPC- and CDSLYTYP-immunized animals inhibited FSH-receptor interaction by 73% and 68%, respectively. These animals also showed reduced estradiol levels. Sequences were synthesized around VYKDPARPC and were tested on a FSH-receptor-bearing Chinese hamster ovary cell line. LVYKDPARPC, VYKDPARPC, YKDPARPIC, CLVYKDPARP, and LVYKDPARP inhibited FSH-receptor interaction by greater than 50%. In female mice, TRDLVYKDPARPKI and LVYKDPARP disrupted estrous cycling in all animals; LVYKDPARPC and CLVYKDPARP disrupted cycling in three of five animals, whereas VYKDPARPC disrupted cycling in one of four animals. CONCLUSIONS: Peptides from two areas of beta-FSH (VYKDPARP and DSLYTYP) were shown to raise FSH-neutralizing antibodies, which were able to suppress estradiol levels. An additional leucine residue to VYKDPARP greatly enhanced the peptide's ability to inhibit FSH-receptor binding and caused fertility disruption in vivo.