Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Investigation into suitable carrier molecules for use in an anti-gonadotrophin releasing hormone vaccine

Ferro, V. A. and Stimson, W. H. (1998) Investigation into suitable carrier molecules for use in an anti-gonadotrophin releasing hormone vaccine. Vaccine, 16 (11-12). pp. 1095-1102. ISSN 0264-410X

Full text not available in this repository. Request a copy from the Strathclyde author


Gonadal function can be controlled through immunoneutralisation of gonadotrophin releasing hormone (GnRH), with an analogue, GnRH-glycys, linked to a carrier molecule and an appropriate adjuvant. In this study, four different types of carrier molecule were investigated: (a) single and branched amino acid polymers--[poly-(D-glu, D-lys) and poly-(phe, glu)-poly(DL-ala)-poly(lys)]; (b) bacterial toxoids--diphtheria (DT) and tetanus (TT); (c) synthetic T-helper epitopes--derived from malarial circumsporozite protein (CS) and measles virus fusion protein (MVF); and (d) thyroglobulin (Thy)--a large protein. The effect of non-ionic surfactant vesicles (NISV) and an aluminum hydroxide based adjuvant (alum), was also examined. Although good antibody responses were achieved with GnRH-glycys-DT, GnRH-glycys-TT and GnRH-glycys-Thy, adsorbed onto alum and the dimerised synthetic T-helper epitope constructs, incorporated into NISV, a critical antibody titre was necessary to result in morphological changes in the gonads and complete suppression of spermatogenesis. This was only achieved with tetanus toxoid and the dimerised T-helper epitopes.