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Abstract

The partially truncated Euler–Maruyama (EM) method is proposed in this pa-

per for highly nonlinear stochastic differential equations (SDEs). We will not

only establish the finite-time strong Lr-convergence theory for the partially

truncated EM method, but also demonstrate the real benefit of the method by

showing that the method can preserve the asymptotic stability and boundedness

of the underlying SDEs.
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1. Motivation

It is known (see, e.g., [13, 16, 17]) that the scalar stochastic differential

equation (SDE)

dx(t) = −
(
x(t) + x5(t)

)
dt+ x2(t)dB(t), t ≥ 0, (1.1)

is exponentially stable in the mean square sense, where B(t) is a scalar Brownian

motion. More precisely, the solution satisfies

E|x(t)|2 ≤ |x0|2e−
15t
8 , t ≥ 0, (1.2)
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for any initial value x(0) = x0 ∈ R (see Example 4.4 below). It is also known

(see, e.g., [9, 11]) that the (classical) Euler–Maruyama (EM) method may not

preserve the exponential stability in the mean square sense (see, e.g., [14, 18]

for the EM method).

Recently, the truncated EM method was developed in [20, 21], where the

finite-time strong convergence theory was established and the order of Lq-

convergence was shown to be arbitrarily close to q/2 for a class of SDEs in-

cluding the underlying SDE (1.1). We therefore wonder if the truncated EM

method can preserve the mean square exponential stability of the underlying

SDE (1.1).

To apply the truncated EM method for a given step size ∆, we need to

truncate the drift coefficient f(x) = −x−x5 and the diffusion coefficient g(x) =

x2 into

f∆(x) = f(π∆(x)) and g∆(x) = g(π∆(x)),

where π∆(x) = (|x| ∧ µ−1(h(∆)))x/|x| and both functions µ−1 and h will be

explained in the next section. The truncated EM solution is then obtained by

applying the EM method to the truncated SDE

dx(t) = f∆(x(t))dt+ g∆(x(t))dB(t).

In other words, the truncated EM solution is formed by setting X0 = x0 and

computing

Xk+1 = Xk + f∆(Xk)∆ + g∆(Xk)∆Bk, k ≥ 0.

When we try to show if this truncated EM solution is exponentially stable in the

mean square sense for all sufficiently small step size ∆, we note the following

factor: the drift coefficient contains the fifth power term −x5 and the linear

term −x while the diffusion coefficient contains the square term x2 but all these

terms are truncated. We realise that it is necessary to truncate the the fifth

power term −x5 and the square term x2; otherwise the EM solution will not

converge to the true solution in the moment sense at a finite time (see, e.g.,

[9, 11]). However, we feel that it is unnecessary to truncate the linear term. In
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fact, from the finite-time-convergence point of view, the linear term does not

cause any problem to the EM method and hence there is no point to truncate

it. Moreover, from the stability point of view, it is this linear term that plays

a key role for the mean square exponential stability of the underlying SDE

(1.1). In other words, truncating the linear term spoils the stability feature of

the underlying SDE (1.1). Based on these observations, we feel it is better to

partially truncate the underlying SDE (1.1) into the following form

dx(t) = −(x(t) + (π∆(x(t)))5)dt+ (π∆(x(t)))2dB(t), (1.3)

and then apply the EM method to this SDE to form the numerical solution:

X0 = x0 and

Xk+1 = Xk − (Xk + (π∆(Xk))5)∆ + (π∆(Xk))2∆Bk, k ≥ 0. (1.4)

We shall see that this numerical solution does not only converge to the true

solution at a finite time but it is also exponentially stable in the mean square

sense for sufficiently small step size ∆. This example motivates us to propose

the the partially truncated EM method in the next section.

It turns out that the partially truncated EM method can preserve the asymp-

totic boundedness of the SDEs. For example, consider the scalar stochastic

Ginzburg–Landau equation (see, e.g., [5, 14])

dx(t) = (ax(t)− bx3(t))dt+ cx(t)dB(t), (1.5)

where a, b, c are three positive numbers. It is known (see [22] or Example 5.4

below) that the second moment of the solution of this SDE is asymptotically

bounded. It is also known (see, e.g., [9, 11]) that the EM method may not

preserve this asymptotic boundedness. However, we will show that our partially

truncated EM method can preserve this boundedness very well.

It needs to mention that several nice explicit methods have been devel-

oped recently for SDEs with both drift and diffusion coefficients growing super-

linearly. The fully tamed Euler method is developed in [12]. A new explicit

balanced scheme using sine functions to control the highly nonlinear terms is
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developed in [28] and the strong convergence order of 1/2 is obtained. The

two-step BDF-Maruyama scheme of order 1/2 is proposed in [1]. The pro-

jected Euler scheme that uses a different truncating strategy is developed in

[26]. Some general criteria on the convergence and the asymptotic stability of

numerical methods are discussed in [10, 26, 27].

The convergence of numerical methods in other senses are interesting and

important as well. In [2], the authors propose a new algorithm to approximate

the laws of the solutions to a class of SDEs with irregular coefficients. The

pathwise convergences of numerical methods with constant and adaptive step

sizes for some highly non-linear SDEs are studied in [6] and [24], respectively. It

is also interesting to see if these methods could preserve asymptotic properties

of the underlying SDEs in their corresponding senses.

The main contribution of this paper is to prove that the partially trun-

cated EM method is able to preserve the mean square exponential stability and

asymptotic boundedness of underlying SDEs, both of whose drift and diffusion

coefficients are allowed to grow super-linearly.

Let us begin to develop our partially truncated EM method and demonstrate

its real benefits.

2. The partially truncated EM method

Throughout this paper, unless otherwise specified, we will use the following

notation. If A is a vector or matrix, its transpose is denoted by AT . If x ∈ Rd,

then |x| is the Euclidean norm. If A is a matrix, we let |A| =
√

trace(ATA) be

its trace norm. If A is a symmetric matrix, denote by λmax(A) and λmin(A) its

largest and smallest eigenvalue, respectively. For two real numbers a and b, we

use a ∨ b = max(a, b) and a ∧ b = min(a, b). If D is a set, its indicator function

is denoted by ID, namely ID(x) = 1 if x ∈ D and 0 otherwise. Moreover, let

(Ω,F ,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the

usual conditions (that is, it is right continuous and increasing while F0 contains

all P-null sets), and let E denote the expectation corresponding to P. Let B(t)
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be an m-dimensional Brownian motion defined on the space.

Consider a d-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t) (2.1)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rd, where

f : Rd → Rd and g : Rd → Rd×m.

We assume that f and g can be decomposed as

f(x) = F1(x) + F (x) and g(x) = G1(x) +G(x), (2.2)

where F1, F : Rd → Rd and G1, G : Rd → Rd×m. We also impose three standing

hypotheses.

Assumption 2.1. Assume that the coefficients F1, F, G1, G satisfy the fol-

lowing conditions: there are constants L1 > 0 and r ≥ 0 such that

|F1(x)− F1(y)| ∨ |G1(x)−G1(y)| ≤ L1|x− y| (2.3)

and

|F (x)− F (y)| ∨ |G(x)−G(y)| ≤ L1(1 + |x|γ + |y|γ)|x− y| (2.4)

for all x, y ∈ Rd.

We can derive from (2.3) that the coefficients F1 and G1 satisfy the linear

growth condition that there exists a constant K1 > 0 such that

|F1(x)| ∨ |G1(x)| ≤ K1(1 + |x|) (2.5)

for all x ∈ Rd.

Assumption 2.2. Assume that the coefficients F and G satisfy the following

condition: there is a pair of constants r̄ > 2 and L2 such that

(x− y)T (F (x)− F (y)) +
r̄ − 1

2
|G(x)−G(y)|2 ≤ L2|x− y|2 (2.6)

for all x, y ∈ Rd.
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Assumption 2.3. Assume that the coefficients F and G satisfy the Khasminskii-

type condition: there is a pair of constants p̄ > r̄ and K2 > 0 such that

xTF (x) +
p̄− 1

2
|G(x)|2 ≤ K2(1 + |x|2) (2.7)

for all x ∈ Rd.

Indeed, (2.7) can be indicated by (2.6). But this approach may force p̄ to

be less than r̄, which is not necessary. We will see it by the example in Section

3.2.

We derive from (2.5) and (2.7) that for any p ∈ (2, p̄),

xT f(x) +
p− 1

2
|g(x)|2

≤ xT (F1(x) + F (x)) +
p− 1

2
(|G1(x)|2 + 2|G1(x)||G(x)|+ |G(x)|2)

≤ |x||F1(x)|+ xTF (x) +
p− 1

2

(
|G1(x)|2 +

p− 1

p̄− p
|G1(x)|2 +

p̄− p
p− 1

|G(x)|2 + |G(x)|2
)

= |x||F1(x)|+ (p− 1)(p̄− 1)

2(p̄− p)
|G1(x)|2 + xTF (x) +

p̄− 1

2
|G(x)|2

≤ K3(1 + |x|2), (2.8)

where

K3 = 2K1 +K2 +
K2

1 (p− 1)(p̄− 1)

p̄− p
.

In a similar manner, we can derive from (2.3) and (2.6) that for any r ∈ (2, r̄)

(x− y)T (f(x)− f(y)) +
r − 1

2
|g(x)− g(y)|2 ≤ L3|x− y|2, (2.9)

where

L3 = 2L1 + L2 +
L2

1(r − 1)(r̄ − 1)

r̄ − r
.

We can therefore state a known result (see, e.g., [18, 25]) as a lemma for the

use of this paper.

Lemma 2.4. Under Assumptions 2.1, 2.2 and 2.3, the SDE (2.1) has a unique

global solution x(t) and, moreover, for any p ∈ (2, p̄),

sup
0≤t≤T

E|x(t)|p < C, ∀T > 0, (2.10)
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where, and from now on, C stands for generic positive real constants dependent

on T, p̄, p,K1, K2, x0 but independent of the step size ∆ (and R later) and its

values may change between occurrences.

To define the partially truncated EM numerical solutions, we first choose a

strictly increasing continuous function µ : R+ → R+ such that µ(r) → ∞ as

r →∞ and

sup
|x|≤r

(
|F (x)| ∨ |G(x)|

)
≤ µ(r), ∀r ≥ 1. (2.11)

Denote by µ−1 the inverse function of µ and we see that µ−1 is a strictly

increasing continuous function from [µ(0),∞) to R+. We also choose a number

∆∗ ∈ (0, 1] and a strictly decreasing function h : (0,∆∗]→ (0,∞) such that

h(∆∗) ≥ µ(1), lim
∆→0

h(∆) =∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, 1). (2.12)

For a given step size ∆ ∈ (0, 1), let us define the mapping π∆ : Rd → Rd by

π∆(x) = (|x| ∧ µ−1(h(∆)))
x

|x|
,

where we set x/|x| = 0 when x = 0. We then define the truncated functions

F∆(x) = F (π∆(x)) and G∆(x) = G(π∆(x)) (2.13)

for x ∈ Rd. It is easy to see that

|F∆(x)| ∨ |G∆(x)| ≤ µ(µ−1(h(∆))) = h(∆) ∀x ∈ Rd. (2.14)

That is, both truncated functions F∆ and G∆ are bounded. Moreover, these

truncated functions preserve the Khasminskii-type condition (2.7) for all ∆ ∈

(0,∆∗] as shown in [20] and we state it here as a lemma for the use of this paper.

Lemma 2.5. Let Assumption 2.3 hold. Then, for all ∆ ∈ (0,∆∗], we have

xTF∆(x) +
p̄− 1

2
|G∆(x)|2 ≤ 2K2(1 + |x|2), ∀x ∈ Rd. (2.15)

In the same way as (2.8) was proved, we can show that for any p ∈ (2, p̄),

xT (F1(x) + F∆(x)) +
p− 1

2
|G1(x) +G∆(x)|2 ≤ K4(1 + |x|2) (2.16)
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for all x ∈ Rd, where

K4 = 2K1 + 2K2 +
K2

1 (p− 1)(p̄− 1)

p̄− p
.

The discrete-time partially truncated EM numerical solutions X∆(tk) ≈

x(tk) for tk = k∆ are formed by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk)+[F1(X∆(tk))+F∆(X∆(tk))]∆+[G1(X∆(tk))+G∆(X∆(tk))]∆Bk,

(2.17)

for k = 0, 1, · · · , where ∆Bk = B(tk+1) − B(tk). There are two versions of the

continuous-time truncated EM solutions. The first one is defined by

x̄∆(t) =

∞∑
k=0

X∆(tk)I[tk,tk+1)(t), t ≥ 0. (2.18)

This is a simple step process so its sample paths are not continuous. We will

refer this as the continuous-time step-process partially truncated EM solution.

The other one is defined by

x∆(t) = x0 +

∫ t

0

[F1(x̄∆(s))+F∆(x̄∆(s))]ds+

∫ t

0

[G1(x̄∆(s))+G∆(x̄∆(s))]dB(s)

(2.19)

for t ≥ 0. We will refer this as the continuous-time continuous-sample partially

truncated EM solution. We observe that x∆(tk) = x̄∆(tk) = X∆(tk) for all

k ≥ 0. Moreover, x∆(t) is an Itô process with its Itô differential

dx∆(t) = [F1(x̄∆(t)) + F∆(x̄∆(t))]dt+ [G1(x̄∆(t)) +G∆(x̄∆(t))]dB(t). (2.20)

3. Finite-Time Lr-Convergence

This section is divided into two parts. The theoretical results of the strong

convergence are proved in the first subsection and a manual of the method is

presented in the second one.

3.1. Theoretical Results

In this part, we will fix T > 0 arbitrarily. The following theorem shows the

strong Lr-convergence of the partially truncated EM method.
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Theorem 3.1. Let Assumptions 2.1, 2.2 and 2.3 hold. If p > r̄, 2p > r̄γ and

for any r ∈ [2, r̄)

h(∆) ≥ µ((∆r/2(h(∆))r)−1/(p−r)), (3.1)

then there is a ∆̄ ∈ (0,∆∗] such that for all ∆ ∈ (0, ∆̄]

E|x∆(T )− x(T )|r ≤ C∆r/2(h(∆))r (3.2)

and

E|x̄∆(T )− x(T )|r ≤ C∆r/2(h(∆))r. (3.3)

We will prove this theorem in a similar fashion as [21, Theorem 3.8], so we

need to establish a number of lemmas as in [21].

Lemma 3.2. Let Assumptions 2.1, 2.2 and 2.3 hold and let p ∈ (2, p̄) be arbi-

trary. Then

sup
0<∆≤∆∗

sup
0≤t≤T

E|x∆(t)|p ≤ C. (3.4)

Proof. Fix any ∆ ∈ (0,∆∗]. By the Itô formula, we derive from (2.19) that, for

0 ≤ t ≤ T ,

E|x∆(t)|p − |x0|p

≤ E
∫ t

0

p|x∆(s)|p−2
(
xT∆(s)[F1(x̄∆(s)) + F∆(x̄∆(s))] +

p− 1

2
|G1(x̄∆(s)) +G∆(x̄∆(s))|2

)
ds

= E
∫ t

0

p|x∆(s)|p−2
(
x̄T∆(s)[F1(x̄∆(s)) + F∆(x̄∆(s))] +

p− 1

2
|G1(x̄∆(s)) +G∆(x̄∆(s))|2

)
ds

+ E
∫ t

0

p|x∆(s)|p−2(x∆(s)− x̄∆(s))T [F1(x̄∆(s)) + F∆(x̄∆(s))]ds. (3.5)

By (2.16), we then have

E|x∆(t)|p − |x0|p ≤ J1 + J2 + J3, (3.6)

where

J1 = E
∫ t

0

pK4|x∆(s)|p−2(1 + |x̄∆(s)|2)ds, (3.7)

J2 = E
∫ t

0

p|x∆(s)|p−2|x∆(s)− x̄∆(s)||F1(x̄∆(s))|ds, (3.8)
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and

J3 = E
∫ t

0

p|x∆(s)|p−2|x∆(s)− x̄∆(s)||F∆(x̄∆(s))|ds. (3.9)

By the Young inequality aβb1−β ≤ βa + (1 − β)b for a, b ≥ 0 and β ∈ (0, 1) as

well as the elementary inequality |x|p−2 ≤ 1 + |x|p, we can show easily that

J1 ≤ C
(

1 +

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds
)
. (3.10)

Similarly, by Assumption 2.1, we can show that

J2 ≤ C
(

1 +

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds
)
. (3.11)

Moreover, by the Young inequality and (2.14), we derive

J3 ≤ (p− 2)E
∫ t

0

|x∆(s)|pds+ 2E
∫ t

0

|x∆(s)− x̄∆(s)|p/2|F∆(x̄∆(s))|p/2ds

≤ (p− 2)

∫ t

0

E|x∆(s)|pds+ 2(h(∆))p/2
∫ t

0

E|x∆(s)− x̄∆(s)|p/2ds.(3.12)

On the other hand, for any s ∈ [0, T ], there is a unique k ≥ 0 such that

tk ≤ s ≤ tk+1. By Assumption 2.1, (2.14) and the properties of the Itô integral

(see, e.g., [18]), we then derive from (2.19) that

E|x∆(s)− x̄∆(s)|p/2 = E|x∆(s)− x∆(tk)|p/2

= E
∣∣∣ ∫ s

tk

[F1(x̄∆(tk)) + F∆(x̄∆(tk))]du+

∫ t

tk

[G1(x̄∆(tk)) +G∆(x̄∆(tk))]dB(u)
∣∣∣p/2

≤ C∆p/4
(

1 + E|x̄∆(tk)|p/2 + (h(∆))p/2
)

= C∆p/4
(

1 + E|x̄∆(s)|p/2 + (h(∆))p/2
)
. (3.13)

Substituting this into (3.12) and recalling (2.12), we get

J3 ≤ (p− 2)

∫ t

0

E|x∆(s)|pds+ 2C(h(∆))p/2∆p/4

∫ t

0

(
1 + E|x̄∆(s)|p/2 + (h(∆))p/2

)
ds

≤ C
(

1 +

∫ t

0

(E|x∆(s)|p + E|x̄∆(s)|p)ds
)
. (3.14)

Substituting (3.10), (3.11) and (3.14) into (3.6), we have

E|x∆(t)|p ≤ C
(

1 +

∫ t

0

sup
0≤u≤s

E|x∆(u)|pds
)
.
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As this holds for any t ∈ [0, T ] while the right-hand side is non-decreasing in t,

we then see

sup
0≤u≤t

E|x∆(u)|p ≤ C
(

1 +

∫ t

0

sup
0≤u≤s

E|x∆(u)|pds
)
.

The well-known Gronwall inequality yields that

sup
0≤u≤T

E|x∆(u)|p ≤ C.

As this holds for any ∆ ∈ (0,∆∗] while C is independent of ∆, we see the

required assertion (3.4). 2

The following lemma shows that x∆(t) and x̄∆(t) are close to each other in

the sense of Lp.

Lemma 3.3. Let Assumptions 2.1, 2.2 and 2.3 hold and let p ∈ (2, p̄) be arbi-

trary. Then there is a ∆̄ ∈ (0,∆∗] such that for all ∆ ∈ (0, ∆̄],

E|x∆(t)− x̄∆(t)|p ≤ C∆p/2(h(∆))p, ∀t ∈ [0, T ]. (3.15)

Consequently

lim
∆→0

E|x∆(t)− x̄∆(t)|p = 0. (3.16)

Proof. By Lemma 3.2, there is a ∆̄ ∈ (0,∆∗] such that

sup
0<∆≤∆̄

sup
0≤t≤T

E|x∆(t)|p ≤ C. (3.17)

Now, fix any ∆ ∈ (0, ∆̄]. For any t ∈ [0, T ], there is a unique k ≥ 0 such that

tk ≤ t ≤ tk+1. In the same way as (3.13) was proved, we can then show

E|x∆(t)− x̄∆(t)|p ≤ C∆p/2
(

1 + E|x̄∆(t)|p + (h(∆))p
)
.

By (3.17), we therefore have

E|x∆(t)− x̄∆(t)|p ≤ C∆p/2(h(∆))p,

which is (3.15). Noting from (2.12) that ∆p/2(h(∆))p ≤ ∆p/4, we obtain (3.16)

from (3.15) immediately. 2

Let us now cite another lemma from [20, Lemma 3.3].
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Lemma 3.4. Let Assumptions 2.1, 2.2 and 2.3 hold. For any real number

R > |x0|, define the stopping time

τR = inf{t ≥ 0 : |x(t)| ≥ R},

where throughout this paper we set inf ∅ =∞ (and as usual ∅ denotes the empty

set). Then

P(τR ≤ T ) ≤ C

Rp
. (3.18)

(Recall that C stands for generic positive real constants independent of ∆ and

R.)

The following lemma can be proved in the same way as [20, Lemma 3.4] was

proved.

Lemma 3.5. Let Assumptions 2.1, 2.2 and 2.3 hold. For any real number

R > |x0| and ∆ ∈ (0, ∆̄] (the same ∆̄ as in Lemma 3.3), define the stopping

time

ρ∆,R = inf{t ≥ 0 : |x∆(t)| ≥ R}.

Then

P(ρ∆,R ≤ T ) ≤ C

Rp
. (3.19)

We can now prove Theorem 3.1. As the proof is in a similar fashion as [20,

Theorem 3.5] was proved so we only highlight the different parts.

Proof of Theorem 3.1.

Let ε > 0 be arbitrary. Let τR and ρ∆,R be the same as the definitions in

Lemmas 3.4 and 3.5. Set

θ∆,R = τR ∧ ρ∆,R and e∆(T ) = x∆(T )− x(T ).

For a sufficiently large R > |x(0)|, we have that

E|e∆(T )|r = E
(
|e∆(T )|rI{θ∆,R>T}

)
+ E

(
|e∆(T )|rI{θ∆,R≤T}

)
. (3.20)

For any δ > 0, using the Young inequality we obtain that

E
(
|e∆(T )|rI{θ∆,R≤T}

)
≤ rδ

p
E|e∆(T )|p +

p− r
pδr/(p−r)

P(θ∆,R ≤ T ). (3.21)
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Applying Lemmas 2.4 and 3.2, we can see that

E|e∆(T )|p ≤ 2p−1E|x(T )|p + 2p−1E|x∆(T )|p ≤ C.

Using Lemmas 3.4 and 3.5, we obtain that

P(θ∆,R ≤ T ) ≤ P(τR ≤ T ) + P(ρ∆,R ≤ T ) ≤ C

Rp
.

Substituting the two estimates above back into (3.21), and choosing δ = ∆r/2(h(∆))r

and R = (∆r/2(h(∆))r)−1/(p−r) we have that

E
(
|e∆(T )|rI{θ∆,R≤T}

)
≤ C∆r/2(h(∆))r. (3.22)

In the same way as the proof of Lemma 3.7 in [21], we can show that

E
(
|e∆(T ∧ θ∆,R)|r

)
≤ C∆r/2(h(∆))r. (3.23)

By (3.1), we can see that

µ−1(h(∆)) ≥ (∆r/2(h(∆))r)−1/(p−r) = R.

Therefore, substituting (3.22) and (3.23) into (3.20) yields (3.2). In addition,

(3.2) together with Lemma 3.3 indicates (3.3). 2

3.2. A Manual of the Method

We demonstrate the process of implementing the partially truncated EM by

the following example.

Example 3.6. Consider a nonlinear test scalar SDE

dx(t) = (x(t)− x5(t))dt+ x2(t)dB(t), t ≥ 0,

with the initial value x(0) = 1. It can be seen that F1(x) = x, F (x) = −x5,

G1(x) = 0 and G(x) = x2.

Step 1. Check the assumptions

13



Assumption 2.1 holds clearly. For Assumption 2.2, it is straightforward to

see that

(x− y)(F (x)− F (y)) +
r̄ − 1

2
|G(x)−G(y)|2

= (x− y)
[
− (x− y)(x4 + x3y + x2y2 + xy3 + y4)

]
+
r̄ − 1

2
(x+ y)2(x− y)2

=
[
− (x4 + x3y + x2y2 + xy3 + y4) +

r̄ − 1

2
(x+ y)2

]
|x− y|2.

But

−(x3y + xy3) = −xy(x2 + y2) ≤ 0.5(x2 + y2)2 = 0.5(x4 + x4) + x2y2.

Hence

(x− y)(F (x)− F (y)) +
r̄ − 1

2
|G(x)−G(y)|2

≤
[
− 0.5(x4 + y4) +

r̄ − 1

2
(x2 + y2)

]
|x− y|2

≤
[
1 +

(r̄ − 1)2

4

]
|x− y|2.

In other words, Assumption 2.2 is also fulfilled for any r̄. Moreover,

xF (x) +
p̄− 1

2
|G(x)|2 = −x6 +

p̄− 1

2
|x2|2

= −x2(x2 − p̄− 1

4
)2 +

(p̄− 1)2

16
x2 ≤ (p̄− 1)2

16
x2,

i.e. Assumption 2.3 is satisfied for any p̄.

Step 2. Choose µ(·) and h(·)

According to (2.11), we set µ(r) = r5 such that

sup
|x|≤r

(
|F (x)| ∨ |G(x)|

)
= sup
|x|≤r

(
|x|5 ∨ |x|2

)
≤ r5, ∀r ≥ 1.

We set h(∆) = ∆−1/10, then all the conditions in (2.12) hold for all ∆∗ ∈ (0, 1].1

Step 3. Define F∆(x) and G∆(x)

1One may notice that the choices of both µ(·) and h(·) are not unique and we do not know

if there are optimal choices currently.
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Figure 1: The strong convergence order at the terminal time T = 2. The red dashed line is

the reference line with the slope of 1/2.

From Step 2, we can see the truncating factor is defined as µ−1(h(∆)) =

∆−1/50. Then according to (2.13), F∆(x) and G∆(x) are defined as

F∆(x) = F ((|x| ∧∆−1/50)
x

|x|
)) and G∆(x) = G((|x| ∧∆−1/50)

x

|x|
)).

Step 4. Calculation in each iteration

For the given step size ∆ and Xk, we compare |Xk| and ∆−1/50. Then

substituting the product of the smaller one and Xk/|Xk| into F (·) and G(·)

yields F∆(Xk) and G∆(Xk). The Xk+1 is calculated by

Xk+1 = Xk + (F1(Xk) + F∆(Xk))∆ +G∆(Xk)∆Bk.

Figure 1 displays the L1 errors at the time T = 2 with step sizes 2−14, 2−13,

2−12 and 2−11. The simulations with step size 2−17 are regarded as the true

solutions. For each step size, 1000 paths are simulated. Compared with the red

dashed reference line, strong convergence order of the partially truncated Euler-

Maruyama method is approximately 1/2, which is in line with the theoretical

result.
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4. Stability

Finite-time convergence is a fundamental property for a numerical method.

However, a nice numerical method for an SDE should also preserve some asymp-

totic properties of the underlying SDE, for example, stability and boundedness

(see, e.g., [4, 8, 9, 15, 19, 23]).

In this section we will show that the partially truncated EM method can

preserve the mean square exponential stability of the underlying SDE (2.1). We

will let Assumptions 2.1–2.3 be the standing hypotheses so we will not mention

them explicitly in the theorems in this section. Moreover, for the stability

purpose, we also assume in this section that

F1(0) = F (0) = 0, G1(0) = G(0) = 0. (4.1)

So the linear growth condition (2.5) becomes

|F1(x)| ∨ |G1(x)| ≤ K1|x|. (4.2)

Our main assumption in this section is the following one.

Assumption 4.1. Assume that there are constants θ ∈ [0,∞] and λ1 > λ2 ≥ 0

such that

2xTF1(x) + (1 + θ)|G1(x)|2 ≤ −λ1|x|2 (4.3)

and

2xTF (x) + (1 + θ−1)|G(x)|2 ≤ λ2|x|2 (4.4)

for all x ∈ Rd, where throughout the remaining part of this paper we choose

θ = 0 and set θ−1|G(x)|2 = 0 when there is no G(x) term in g(x), while choose

θ =∞ and set θ|G1(x)|2 = 0 when there is no G1(x) term in g(x).

This assumption implies

2xT f(x) + |g(x)|2 ≤ −(λ1 − λ2)|x|2, x ∈ Rd. (4.5)

It is therefore known (see, e.g., [13, 16, 17]) that the SDE (2.1) is exponentially

stable in the mean square sense. To be precise, we state it as a theorem.
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Theorem 4.2. Let Assumption 4.1 hold. Then for any initial value x0 ∈ Rd,

the solution of the SDE (2.1) satisfies

E|x(t)|2 ≤ |x0|2e−(λ1−λ2)t, ∀t ≥ 0. (4.6)

The following theorem shows that the partially truncated EM method can

preserve this mean square exponential stability perfectly.

Theorem 4.3. Let Assumption 4.1 hold. Then for any ε ∈ (0, λ1 − λ2), there

is a ∆̂ ∈ (0,∆∗) such that for every ∆ ∈ (0, ∆̂) and any initial value x0 ∈ Rd,

the solution of the partially truncated EM method (2.17) satisfies

E|X∆(tk)|2 ≤ |x0|2e−(λ1−λ2−ε)tk , ∀k ≥ 0. (4.7)

Proof. To simplify the notation, we define, in the remaining part of this paper,

f∆(x) = F1(x) + F∆(x) and g∆(x) = G1(x) +G∆(x), x ∈ Rd,

for every ∆ ∈ (0,∆∗]. We first show that these functions preserve property (4.5)

perfectly in the sense that

2xT f∆(x) + |g∆(x)|2 ≤ −(λ1 − λ2)|x|2, x ∈ Rd. (4.8)

In fact, this holds obviously for x ∈ Rd with |x| ≤ µ−1(h(∆)). For x ∈ Rd with

|x| > µ−1(h(∆)), we derive, by Assumption 4.1,

2xT f∆(x) + |g∆(x)|2

≤ 2xTF1(x) + (1 + θ)|G1(x)|2 + 2xTF (π∆(x)) + (1 + θ−1)|G(π∆(x))|2

≤ −λ1|x|2 + 2(x− π∆(x))TF (π∆(x)) + 2(π∆(x))TF (π∆(x)) + (1 + θ−1)|G(π∆(x))|2

≤ −λ1|x|2 + λ2|π∆(x)|2 + 2(x− π∆(x))TF (π∆(x)). (4.9)

But, by Assumption 4.1 again,

2(x− π∆(x))TF (π∆(x)) = 2[|x|/µ−1(h(∆))− 1](π∆(x))TF (π∆(x))

≤ [|x|/µ−1(h(∆))− 1]λ2|π∆(x)|2.
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Substituting this into (4.9) and noting that |π∆(x)| = µ−1(h(∆)), we get

2xT f∆(x) + |g∆(x)|2 ≤ −λ1|x|2 + λ2|x||π∆(x)| ≤ −(λ1 − λ2)|x|2. (4.10)

Fix x0 ∈ Rd arbitrarily. For any ∆ ∈ (0,∆∗], we can easily obtain from (2.17)

that

E|X∆(tk+1)|2 = E
(
|X∆(tk)|2 + |f∆(X∆(tk))|2∆2 + |g∆(X∆(tk))∆Bk|2

+ 2X∆(tk)T f∆(X∆(tk))∆
)

(4.11)

for k = 0, 1, · · · . But

E(|g∆(X∆(tk))∆Bk|2) = E
(
trace

[
g∆(X∆(tk))∆Bk∆BTk g∆(X∆(tk))T

])
= E

(
E
(
trace

[
g∆(X∆(tk))∆Bk∆BTk g∆(X∆(tk))T

]∣∣Ftk))
= E

(
trace

[
g∆(X∆(tk))E

(
∆Bk∆BTk

∣∣Ftk)g∆(X∆(tk))T
])

= E
(

trace
[
g∆(X∆(tk))∆Img∆(X∆(tk))T

])
= ∆E|g∆(X∆(tk))|2,

where Im denotes the m×m identity matrix. Substituting this into (4.11) yields

E|X∆(tk+1)|2 = E
(
|X∆(tk)|2 + |f∆(X∆(tk))|2∆2 + |g∆(X∆(tk))|2∆

+ 2X∆(tk)T f∆(X∆(tk))∆
)
. (4.12)

Using (4.8), we get

E|X∆(tk+1)|2 ≤ (1− (λ1 − λ2)∆)E|X∆(tk)|2 + ∆2E|f∆(X∆(tk))|2. (4.13)

Now, by (4.2), we have

|f∆(x)|2 ≤ 2K2
1 |x|2 + 2|F∆(x)|2, ∀x ∈ Rd.

But, by (2.4) and (4.1), we have

|F∆(x)|2 ≤ 4L2
1|x|2 if |x| ≤ 1

while

|F∆(x)|2 ≤ h2(∆) ≤ h2(∆)|x|2 if |x| > 1.

18



We hence always have

|f∆(x)|2 ≤ 2(K2
1 + 4L2

1 + h2(∆))|x|2, ∀x ∈ Rd.

Recalling (2.12), we see that for any ε ∈ (0, λ1 − λ2), there is a ∆̂ ∈ (0,∆∗)

sufficiently small such that for all ∆ ∈ (0, ∆̂), (λ1 − λ2 − ε)∆ < 1 and

∆|f∆(x)|2 ≤ ε|x|2, ∀x ∈ Rd. (4.14)

For each such ∆, we hence obtain from (4.13) and (4.14) that

E|X∆(tk+1)|2 ≤ (1− (λ1−λ2− ε)∆)E|X∆(tk)|2 ≤ |x0|2(1− (λ1−λ2− ε)∆)k+1.

(4.15)

By the elementary inequality

1− (λ1 − λ2 − ε)∆ ≤ e−(λ1−λ2−ε)∆,

we further have

E|X∆(tk+1)|2 ≤ |x0|2e−(λ1−λ2−ε)tk+1 , (4.16)

which is the desired assertion (4.7). The proof is complete. 2

Example 4.4. Let us return to the scalar SDE (1.1), namely

dx(t) = −(x(t) + x5(t))dt+ x2(t)dB(t), t ≥ 0, (4.17)

with the initial value x(0) = x0 ∈ R, where B(t) is a scalar Brownian motion.

We decompose the coefficients f(x) and g(x) in the form of (2.2) with

F1(x) = −x, F (x) = −x5, G1(x) = 0, G(x) = x2

for x ∈ R. Choosing θ =∞, we then have

2xTF1(x) + (1 + θ)|G1(x)|2 = −2|x|2

and

2xTF (x) + (1 + θ−1)|G(x)|2 = −2x6 + x4.
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But

−2x6 + x4 = −
(

2x6 − x4 +
1

8
x2
)

+
1

8
x2 = −2x2

(
x2 − 1

4

)2

+
1

8
x2 ≤ 1

8
x2.

In other words, Assumption 4.1 is satisfied with λ1 = 2 and λ2 = 1/8. By

Theorem 4.2, the SDE (4.17) is exponentially stable in the mean square sense,

namely, for any initial value x0 ∈ R, the solution of the SDE (4.17) satisfies

E|x(t)|2 ≤ |x0|2e−
15t
8 , ∀t ≥ 0. (4.18)

It is also known (see, e.g., [9, 11]) that the EM method might not preserve

this mean square exponential stability. However, our new partially truncated

EM method does preserve this stability perfectly. In fact, it is easy to see that

our standing hypotheses, Assumption 2.1 is satisfied. Assumption 2.2 can be

verified in the same way as that in Example 3.6. Moreover, for any p̄ > 2,

xTF (x) +
p̄− 1

2
|G(x)|2 = −x6 +

p̄− 1

2
x4

which is bounded above in x ∈ R. In other words, Assumption 2.3 is also

satisfied for any p̄ > 2. We can choose µ(r) = r5 and h(∆) = ∆−1/4 to define

the numerical solution X∆(tk) by the partially truncated EM method (2.17).

By Theorem 3.1, this numerical solution will converge to the true solution in

Lr for any r ≥ 2 at any finite time. Moreover, by Theorem 4.3, we can also

conclude that for any ε ∈ (0, 15/8), there is a positive number ∆̂ such that for

every ∆ ∈ (0, ∆̂) and any initial value x0 ∈ Rd, this numerical solution satisfies

E|X∆(tk)|2 ≤ |x0|2e−(15/8−ε)tk , ∀k ≥ 0. (4.19)

Figure 2 displays the asymptotic behaviour of the equation (4.17). The lower

plot shows that the second moment of the partially truncated Euler-Maruyama

method tends to zero as the time advances. In addition, the behaviour of the

pathwise asymptotic stability can also be observed from the upper plot.

5. Boundedness

Although the stability of numerical methods for SDEs has been studied

intensively (see, e.g., [4, 8, 9, 19, 23]), there are only a few papers on the
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Figure 2: The upper plot is the simulation of one path and the lower one is the mean square

of 1000 paths.

asymptotic boundedness of numerical methods (see, e.g., [15]).

In this section we will show that the partially truncated EM method can

preserve the asymptotic boundedness of the underlying SDE (2.1). As in the

previous section, we let Assumptions 2.1–2.3 be the standing hypotheses so we

will not mention them explicitly in the theorems in this section. Of course we

will no longer need condition (4.1) and Assumption 4.1 in this section. The

main assumption in this section is the following one.

Assumption 5.1. Assume that there are constants θ ∈ [0,∞], α1, α2 ≥ 0 and

β1 > β2 ≥ 0 such that

2xTF1(x) + (1 + θ)|G1(x)|2 ≤ α1 − β1|x|2 (5.1)

and

2xTF (x) + (1 + θ−1)|G(x)|2 ≤ α2 + β2|x|2 (5.2)

for all x ∈ Rd.

This assumption implies

2xT f(x) + |g(x)|2 ≤ α1 + α2 − (β1 − β2)|x|2, x ∈ Rd. (5.3)
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We can hence state a theorem which follows easily from [22, Theorem 5.2 on

page 157].

Theorem 5.2. Let Assumption 5.1 hold. Then for any initial value x0 ∈ Rd,

the solution of the SDE (2.1) satisfies

lim sup
t→∞

E|x(t)|2 ≤ α1 + α2

β1 − β2
. (5.4)

The following theorem shows that the partially truncated EM method can

preserve this asymptotic boundedness perfectly.

Theorem 5.3. Let Assumption 5.1 hold. Then for any ε ∈ (0, β1 − β2), there

is a ∆̂ ∈ (0,∆∗) such that for every ∆ ∈ (0, ∆̂) and any initial value x0 ∈ Rd,

the solution of the partially truncated EM method (2.17) satisfies

lim sup
k→∞

E|X∆(tk)|2 ≤ α1 + α2 + ε

β1 − β2 − ε
. (5.5)

Proof. Fix ε ∈ (0, λ1 − λ2) arbitrarily. We first show that the functions f∆ and

g∆ defined in the previous section preserve property (5.3) almost perfectly in

the sense that

2xT f∆(x) + |g∆(x)|2 ≤ α1 + α2 − (β1 − β2 − 0.5ε)|x|2, x ∈ Rd, (5.6)

as long as ∆ ∈ (0, ∆̂1), where ∆̂1 ∈ (0,∆∗) is sufficiently small for which

α2

(µ−1(h(∆̂1)))2
≤ 0.5ε. (5.7)

In fact, fix any ∆ ∈ (0, ∆̂1) and it is obvious that (5.6) holds for x ∈ Rd with

|x| ≤ µ−1(h(∆)). For x ∈ Rd with |x| > µ−1(h(∆)), we derive, by Assumption

5.1,

2xT f∆(x) + |g∆(x)|2

≤ 2xTF1(x) + (1 + θ)|G1(x)|2 + 2xTF (π∆(x)) + (1 + θ−1)|G(π∆(x))|2

≤ α1 − β1|x|2 + 2(x− π∆(x))TF (π∆(x))

+ 2(π∆(x))TF (π∆(x)) + (1 + θ−1)|G(π∆(x))|2

≤ α1 − β1|x|2 + 2(x− π∆(x))TF (π∆(x)) + α2 + β2(µ−1(h(∆)))2. (5.8)
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But, by Assumption 5.1 again,

2(x− π∆(x))TF (π∆(x)) = 2[|x|/µ−1(h(∆))− 1](π∆(x))TF (π∆(x))

≤ [|x|/µ−1(h(∆))− 1]
(
α2 + β2(µ−1(h(∆)))2

)
Substituting this into (5.8) yields

2xT f∆(x) + |g∆(x)|2 ≤ α1 − β1|x|2 +
|x|

µ−1(h(∆))

(
α2 + β2(µ−1(h(∆)))2

)
≤ α1 − β1|x|2 + α2

( |x|
µ−1(h(∆))

)2

+ β2|x|2

≤ α1 − (β1 − β2 − 0.5ε)|x|2, (5.9)

where (5.7) have been used. In other words, (5.6) holds for any x ∈ Rd with

|x| > µ−1(h(∆)) too so it holds for all x ∈ Rd as claimed.

Fix x0 ∈ Rd arbitrarily. For any ∆ ∈ (0, ∆̂1), it follows from (4.12) and (5.6)

that

E|X∆(tk+1)|2 ≤ ∆(α1 + α2) + ∆2E|f∆(X∆(tk))|2

+
[
1−∆(β1 − β2 − 0.5ε)

]
E|X∆(tk)|2. (5.10)

But, by (2.5) and (2.14),

|f∆(X∆(tk))|2 ≤ 2|F1(X∆(tk))|2+2|F∆(X∆(tk))|2 ≤ 4K1(1+|X∆(tk)|2)+2(h(∆))2.

Hence, by (2.12),

∆|f∆(X∆(tk))|2 ≤ 4∆K1(1 + |X∆(tk)|2) + 2
√

∆.

Consequently, there is a ∆̂ ∈ (0, ∆̂1] sufficiently small such that for any ∆ ∈

(0, ∆̂), ∆(β1 − β2 − ε) < 1 and

∆|f∆(X∆(tk))|2 ≤ ε+ 0.5ε|X∆(tk)|2. (5.11)

Now, fix any ∆ ∈ (0, ∆̂). Substituting (5.11) into (5.10) yields

E|X∆(tk+1)|2 ≤ ∆(α1 + α2 + ε) +
[
1−∆(β1 − β2 − ε)

]
E|X∆(tk)|2. (5.12)
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This implies

E|X∆(tk+1)|2 ≤ ∆(α1 + α2 + ε)
(

1 +
[
1−∆(β1 − β2 − ε)

])
+

[
1−∆(β1 − β2 − ε)

]2 E|X∆(tk−1)|2

≤ · · ·

≤ ∆(α1 + α2 + ε)
(

1 +

k∑
i=1

[
1−∆(β1 − β2 − ε)

]i)
+

[
1−∆(β1 − β2 − ε)

]k+1 |x0|2

=
α1 + α2 + ε

β1 − β2 − ε

(
1−

[
1−∆(β1 − β2 − ε)

]k+1
)

+
[
1−∆(β1 − β2 − ε)

]k+1 |x0|2. (5.13)

Letting k → ∞, we obtain the required assertion (5.5). The proof is complete.

2

Example 5.4. Let us return to the SDE (1.5), namely consider the scalar

stochastic Ginzburg–Landau equation (see, e.g., [5, 14])

dx(t) = (ax(t)− bx3(t))dt+ cx(t)dB(t), (5.14)

where B(t) is a scalar Brownian motion and a, b, c are three positive numbers.

We decompose the coefficients f(x) and g(x) in the form of (2.2) with

F1(x) = −(a+ c2)x, F (x) = (2a+ c2)x− bx3, G1(x) = cx, G(x) = 0

(5.15)

for x ∈ R. Choosing θ = 0, we then have

2xF1(x) + (1 + θ)|G1(x)|2 = −(2a+ c2)x2

and

2xF (x) + (1 + θ−1)|G(x)|2 = 2(2a+ c2)x2 − 2bx4 ≤ (2a+ c2)2

2b
.

That is, Assumption 5.1 holds with

α1 = 0, β1 = 2a+ c2, α2 =
(2a+ c2)2

2b
, β2 = 0.
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By Theorem 5.2, we then see that for any initial value x0 ∈ Rd, the solution of

the SDE (5.14) satisfies

lim sup
t→∞

E|x(t)|2 ≤ 2a+ c2

2b
. (5.16)

It is known (see, e.g., [9, 11]) that the EM method may not preserve this asymp-

totic boundedness. However, we now show that our partially truncated EM

method can preserve this boundedness perfectly. In fact, it is easy to see that

the coefficients of the SDE (5.14) with their decompositions in (5.15) satisfy

Assumptions 2.1 - 2.3 for any p̄ > 2. We can choose µ(r) = (2a + c2 + b)r3

and h(∆) = ∆−1/4 to define the numerical solution X∆(tk) by the partially

truncated EM method (2.17). By Theorem 3.1, this numerical solution will

converge to the true solution in Lr for any r ≥ 2 at any finite time. Moreover,

by Theorem 5.3, we can also conclude that for any ε ∈ (0, 2a + c2), there is a

positive number ∆̂ such that for every ∆ ∈ (0, ∆̂) and any initial value x0 ∈ Rd,

this numerical solution satisfies

lim sup
k→∞

E|X∆(tk)|2 ≤
(2a+c2)2

2b + ε

2a+ c2 − ε
. (5.17)

Example 5.5. Let us now discuss a d-dimensional SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t), (5.18)

on t ≥ 0 with the initial value x(0) = x0 ∈ Rd. Here B(t) is a scalar Brownian

motion and f, g : Rd → Rd are defined by

f(x) = diag(x1, x2, ..., xd)(b+Ax2) and g(x) = diag(x1, x2, ..., xd)Cx

for x ∈ Rd, where b ∈ Rd, A,C ∈ Rd×d and x2 = (x2
1, · · · , x2

d)
T . If we restrict

the state space of this SDE in the positive cone Rd+, it is known as the stochastic

power Lotka-Volterra model (see, e.g., [3]). But we here treat this SDE in the

whole Rd-space. Let b̄ = max1≤i≤d |bi| and decompose the coefficients f(x) and

g(x) in the form of (2.2) with

F1(x) = −b̄x, F (x) = b̄x+ diag(x1, x2, ..., xd)(b+Ax2),
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and

G1(x) = 0, G(x) = diag(x1, x2, ..., xd)Cx.

It is easy to see that Assumption 2.1 is satisfied. To satisfy Assumption 2.3, we

assume that

−λmax(A+AT ) > dλmax(CTC). (5.19)

We then derive that

xTF (x) = b̄|x|2 + (x2)T b+ (x2)TAx2 ≤ 2b̄|x|2 +
1

2
λmax(A+AT )|x2|2.

But

|x|4 =

d∑
i,j=1

x2
ix

2
j ≤

d∑
i=1

x4
i +

1

2

∑
i 6=j

(x4
i + x4

j ) = d

d∑
i=1

x4
i = d|x2|2.

So

xTF (x) ≤ 2b̄|x|2 +
1

2d
λmax(A+AT )|x|4. (5.20)

Moreover,

|G(x)|2 = xTCTdiag(x2
1, x

2
2, ..., x

2
d)Cx ≤ |x|2xTCTCx ≤ λmax(CTC)|x|4.

(5.21)

Set

p̄ = 1 +
−λmax(A+AT )

dλmax(CTC)
. (5.22)

We have p̄ > 2 by condition (5.19) and, by (5.20) and (5.21),

xTF (x) +
p̄− 1

2
|G(x)|2 ≤ 2b̄|x|2.

In other words, Assumption 2.3 is satisfied. Let us now verify Assumption 5.1.

Choosing θ =∞, we have

2xTF1(x) + (1 + θ)|G1(x)|2 = −2b̄|x|2 (5.23)

and, by (5.20) and (5.21) again,

2xTF (x)+(1+θ−1)|G(x)|2 ≤ 4b̄|x|2−1

d

(
−λmax(A+AT )−d λmax(CTC)

)
|x|4 ≤ α2,

(5.24)
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where

α2 =
4db̄2

−λmax(A+AT )− d λmax(CTC)
. (5.25)

That is, Assumption 5.1 is satisfied with

α1 = 0, β1 = 2b̄, β2 = 0 and α2 as defined above.

By Theorem 5.2, we can therefore conclude that under condition (5.19), for any

initial value x0 ∈ Rd, the solution of the SDE (5.18) satisfies

lim sup
t→∞

E|x(t)|2 ≤ α2

2b̄
. (5.26)

It is known (see, e.g., [9, 11]) that the EM method may not preserve this asymp-

totic boundedness. However, our partially truncated EM method will do. In

fact, We can choose µ(r) = δr3, for a sufficiently large positive number δ, and

h(∆) = ∆−1/4 to define the numerical solution X∆(tk) by the partially trun-

cated EM method (2.17). By Theorem 3.1, this numerical solution will converge

to the true solution in Lr for any 2 ≤ r < p̄ at any finite time, where p is de-

fined by (5.22). Moreover, by Theorem 5.3, we can also conclude that for any

ε ∈ (0, 2b̄), there is a positive number ∆̂ such that for every ∆ ∈ (0, ∆̂) and any

initial value x0 ∈ Rd, this numerical solution satisfies

lim sup
k→∞

E|X∆(tk)|2 ≤ α2 + ε

2b̄− ε
. (5.27)

6. Discussions and Conclusions

Motivated by two examples discussed in Section 1, we developed a new ex-

plicit numerical scheme, called the partially truncated EM method for nonlinear

SDEs under the local Lipschitz condition plus the Khasminskii-type condition.

We established the finite-time strong Lr-convergence theory for the partially

truncated EM method.

With respect of the finite convergence, we do not claim that our method

outperforms those explicit methods, such as [1] [12] [21] [26] [28], that were
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also designed for SDEs with both drift and diffusion coefficients growing super-

linearly. Actually, the finite time strong convergence order of those methods

and the partially truncated EM method are 1/2 or arbitrarily close to 1/2.

The real benefits of this new method lie in that the method can preserve the

asymptotic stability and boundedness of the underlying SDEs.

It should be noted that the conditions we imposed to guarantee the mean

square exponential stability and the mean square asymptotic boundedness are

only sufficient, but not necessary. In addition, our assumptions require the

drift coefficient to dominate the diffusion coefficient in the negative direction,

which may exclude some types of SDEs, such as some driftless SDEs with super-

linear diffusion. Therefore, it is interesting to investigate whether the partially

truncated EM method can still work if the assumptions in this paper are further

released.
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