Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

The endothelium solves problems that endothelial cells do not know exist

McCarron, John G. and Lee, Matthew D. and Wilson, Calum (2017) The endothelium solves problems that endothelial cells do not know exist. Trends in Pharmacological Sciences, 38 (4). pp. 322-338. ISSN 0165-6147

[img]
Preview
Text (McCarron-etal-TPS2017-endothelium-solves-problems-that-endothelial-cells)
McCarron_etal_TPS2017_endothelium_solves_problems_that_endothelial_cells.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (4MB) | Preview

Abstract

The endothelium is the single layer of cells that lines the entire cardiovascular system and that regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentration of many simultaneously arriving extracellular activators that each provide cues to physiological state. Here, we suggest that the extraordinary sensory capabilities of the endothelium does not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides a system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.