Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

The endothelium solves problems that endothelial cells do not know exist

McCarron, John G. and Lee, Matthew D. and Wilson, Calum (2017) The endothelium solves problems that endothelial cells do not know exist. Trends in Pharmacological Sciences, 38 (4). pp. 322-338. ISSN 0165-6147

[img]
Preview
Text (McCarron-etal-TPS2017-endothelium-solves-problems-that-endothelial-cells)
McCarron_etal_TPS2017_endothelium_solves_problems_that_endothelial_cells.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (4MB) | Preview

Abstract

The endothelium is the single layer of cells that lines the entire cardiovascular system and that regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentration of many simultaneously arriving extracellular activators that each provide cues to physiological state. Here, we suggest that the extraordinary sensory capabilities of the endothelium does not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides a system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.