
This version is available at https://strathprints.strath.ac.uk/59537/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Letter to Editor

Utilisation of the ESMO-MCBS in practice of HTA

Wild C¹, Emprechtinger¹, Grössman¹, Vella Bonanno P², Bucsics A³, Furst J⁴, Godman B⁵,⁶, Gulbinovič J⁷, Jones J⁸, Pomorski MK⁹

¹Ludwig Boltzmann Institute of Health technology Assessment, Vienna), Austria; ²Independent Pharmaceutical Consultant, Mellieha, Malta; ³Department of Finance, University of Austria, Vienna, Austria; ⁴Medicinal Products Department, Health Insurance Institute of Slovenia, Ljubljana, Slovenia; ⁵Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; ⁶Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; ⁷Faculty of Medicine - Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University and State Medicines Control Agency, Vilnius, Lithuania; ⁸Healthcare Improvement Scotland - Scottish Medicine Consortium, Glasgow, United Kingdom; ⁹Agency for Health Technology Assessment and Tariff System, Warsaw, Poland

Corresponding author:
Priv. Doz. Dr. Claudia Wild, Ludwig Boltzmann Institute for Health Technology Assessment (LBI-HTA)
Garnisongasse 7/20, 1090 Vienna, Austria
tel: +43/1/236 81 19 - 12
mail: claudia.wild@hta.lbg.ac.at

(Accepted for publication Annals of Oncology – Please keep Confidential).

Disclosure: The authors have declared no conflicts of interest.

It is highly appreciated that the European Society of Medical Oncology has developed a system to assess new oncologic compounds according to their value to patients. Consequently, offering decision-support to those who either want to use the new cancer therapies in clinical practice but cannot keep up-to-date with all therapy options or, alternatively, to those who have to decide whether or not to fund new oncology medicines or exclude from reimbursement due to their low value. This is particularly important with ever-rising prices for new oncology medicines which have increased up to ten fold in recent years.

Having established a horizon-scanning system for new oncology medicines for Austria [1] since 2009, we have extensive experience with the early assessment of newly approved therapies for patients with cancer (n=59). Until recently, these assessments have not included recommendations. We are now considering an adapted version of the ESMO-MCBS. With the aim of piloting and validating the ESMO-MCBS – as suggested by Hartmann [2] – we – 3 researchers, blinded to ESMO scores, blinded to each other’s scoring - rated drugs in 3 indications (colorectal carcinoma, melanoma and lung cancer) which had been assessed by the Austrian HSO programme as well as having been scored by ESMO (n=11) (Table 1).
In addition we discussed the ESMO-MCBS in a meeting of the Piperska-group for “rational prescribing”, a group of health authority personnel, advisers and academics from across Europe.

Table 1: Adapted benefit assessment based on ESMO-MBSC

<table>
<thead>
<tr>
<th>Active substance (Total name)</th>
<th>Indication</th>
<th>Intention</th>
<th>PE (SE)</th>
<th>For m</th>
<th>MG standard treatment</th>
<th>UIU (months)</th>
<th>HR (%)</th>
<th>Score calculation</th>
<th>PM</th>
<th>Adjudication</th>
<th>H5Q</th>
<th>H5O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimemuzin (VELCOUR)</td>
<td>mCRC</td>
<td>Not curative</td>
<td>OS 2a</td>
<td>&gt;1 year</td>
<td>1.44</td>
<td>0.82 (0.57-1.19)</td>
<td>HR &gt; 0.75 OR OS &lt; 1.5 m</td>
<td>1</td>
<td>1-1</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Regorafenib (CORRECT)</td>
<td>mCRC</td>
<td>Not curative</td>
<td>OS 2a</td>
<td>≤1 year</td>
<td>1.4</td>
<td>0.77 (0.59-0.99)</td>
<td>HR &gt; 0.75 OR OS &lt; 1.5 m</td>
<td>1</td>
<td>1-1</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Navelbine (MPECT)</td>
<td>Adrenocortico ma of the adrena l (1° line)</td>
<td>Not curative</td>
<td>OS 2a</td>
<td>≤1 year</td>
<td>1.8</td>
<td>0.72 (0.62-0.86)</td>
<td>HR &gt; 0.75 OR OS &lt; 1.5 m</td>
<td>1.2</td>
<td>1-1</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Atazaril (LUXO)</td>
<td>Locally advanced NSCLC (1° line)</td>
<td>FFS (OS)</td>
<td>2a</td>
<td>&gt;1 year</td>
<td>1.8</td>
<td>OS: 1.12 (0.73-1.73)</td>
<td>HR &gt; 0.75 OR OS 1.5-2.4 m</td>
<td>1</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazaril (LUXO)</td>
<td>Locally advanced NSCLC (1° line)</td>
<td>FFS (OS)</td>
<td>2b</td>
<td>≤10 months</td>
<td>5.4</td>
<td>0.58 (0.6-0.67)</td>
<td>FFS: 14.2 (3.43-0.05)</td>
<td>HR ≤ 0.65 AND FFS ≥ 1.5 m</td>
<td>3</td>
<td>1-1</td>
<td>1 (9)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Cisplatin Profile (1007)</td>
<td>NSCLC (1° line)</td>
<td>FFS (OS)</td>
<td>2b</td>
<td>&lt;10 months</td>
<td>4.7</td>
<td>0.25 (0.07-0.70)</td>
<td>FFS: 0.49 (0.37-0.64)</td>
<td>HR ≤ 0.65 AND FFS ≥ 1.5 m</td>
<td>3</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>ERS771 (OPTIMAL CTNO. 2002)</td>
<td>NSCLC (1° line)</td>
<td>FFS (OS)</td>
<td>2b</td>
<td>&gt;1 year</td>
<td>8.5</td>
<td>0.08 (0.10-0.06)</td>
<td>FFS: 0.0 (0.00-0.00)</td>
<td>HR ≤ 0.65 AND FFS ≥ 1.5 m</td>
<td>3</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Endoxan (BETAC)</td>
<td>NSCLC (1° line)</td>
<td>FFS (OS)</td>
<td>2b</td>
<td>&gt;1 year</td>
<td>4.5</td>
<td>0.10 (0.04-0.27)</td>
<td>OS: 0.20 (0.10-0.37)</td>
<td>HR &gt; 0.75 OR OS ≥ 1.5-2.4 m</td>
<td>3</td>
<td>1 (9)</td>
<td>1 (9)</td>
<td></td>
</tr>
</tbody>
</table>

1. Median OS data from Updated analysis: 2a used, since OS data available
2. Only NS data: OS not available
3. Only OS data: OS not available
4. All NS data: OS data not available

Abbreviations: AE=adverse events; HR= Hazard ratio; m=months; MG=median gain; PE=primary endpoint; SAF=Serious adverse events; SE=secondary endpoint; QoL=quality of life

5. Form 2a was used, since OS data available
6. Reduction of OS
7. Form 2b was used although OS was the primary endpoint, but at the time of analysis it had not been reached
8. Adjudication if level of the drug leads to improved FFS. QoL assessment does not demonstrate improvement
9. Only FFS data: OS not available

In addition we discussed the ESMO-MCBS in a meeting of the Piperska-group for “rational prescribing”, a group of health authority personnel, advisers and academics from across Europe.
involved with developing models to optimise the managed entry of new medicines \(^3\)\(^4\) and collected comments based on experiences with applying the proposed scores.

Lastly, we compared our scoring with drug-assessments of several countries (IQWiG, NICE, HAS, SMC, pCODR, etc.) \(^5\) (table 2) and found a good correlation between oncology medicines scored with 1-2 on the ESMO-MCBS scale with oncology medicines not recommended for funding due to a lack of efficacy or poor cost-effectiveness.
### Table 2: Comparison of Scoring with HTA (and conditional agreements)

<table>
<thead>
<tr>
<th>Active substance</th>
<th>Indication</th>
<th>Pre-reimbursement assessments &amp; Managed entry agreement</th>
<th>HSO/ ESMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflibercept</td>
<td>mCRC (2nd line)</td>
<td>Germany (IQWIG): MI France (HAS): ASMR 5 England (NICE): NR Canada (pCODR): NR Belgium (RIZIV/INAMI): MEA Italy (AIFA): MEA Norway (NOKC): NL Poland (AOTMiT): PL Scotland (SMC): R</td>
<td>1 (0)/1</td>
</tr>
<tr>
<td>Regorafenib</td>
<td>mCRC</td>
<td>Germany (IQWIG): MI France (HAS): ASMR 5 Canada (pCODR): NR Belgium (RIZIV/INAMI): MEA Poland (AOTMiT): NL</td>
<td>1 (0)/1</td>
</tr>
<tr>
<td>Nab-Paclitaxel</td>
<td>m adenocarcinoma of the pancreas (1st line)</td>
<td>France (HAS): ASMR 4 England (NICE): NR Canada (pCODR): CE-Ratio Belgium (RIZIV/INAMI): MEA Italy (AIFA): MEA Poland (AOTMiT): NL Scotland (SMC): R</td>
<td>1/3</td>
</tr>
<tr>
<td>Gefitinib</td>
<td>locally advanced/ m NSCLC (EGRF) (1st line)</td>
<td>France (HAS): ASMR 4 England (NICE): R Italy (AIFA): MEA WHO: NE Poland (AOTMiT): PL Scotland (SMC): R</td>
<td>2/4</td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>advanced &amp; mMelanoma (1st line)</td>
<td>Germany (IQWIG): NO France (HAS): ASMR 5 England (NICE): R Canada (pCODR): CE-Ratio Belgium (RIZIV/INAMI): MEA Italy (AIFA): MEA Poland (AOTMiT): PL Scotland (SMC): R</td>
<td>1/3</td>
</tr>
<tr>
<td>Nivolumab</td>
<td>inoperable/ metastatic melanoma (1st line)</td>
<td>Germany (IQWIG): NO France (HAS): ASMR 5 England (NICE): R Canada (pCODR): CE-Ratio Belgium (RIZIV/INAMI): MEA Italy (AIFA): MEA Poland (AOTMiT): MEA, CE-Ratio Scotland (SMC): R</td>
<td>2/4</td>
</tr>
<tr>
<td>Trametinib</td>
<td>advanced/ mMelanoma (BRAF V600 mutation)</td>
<td>Germany (IQWIG): NO Canada (pCODR): CE-Ratio</td>
<td>2/4</td>
</tr>
<tr>
<td>Vemurafenib</td>
<td>melanoma (BRAF V600 mutation) (1st line)</td>
<td>France (HAS): ASMR3 England (NICE): R Canada (pCODR): CE-Ratio Belgium (RIZIV/INAMI): MEA Italy (AIFA): MEA Poland (AOTMiT): MEA, CE-Ratio Scotland (SMC): R</td>
<td>2/4</td>
</tr>
</tbody>
</table>
We identified several limitations to the current ESMO-MCBS. Some of them have been pointed out and discussed already by others [2, 6, 7] As a result, we propose adaptations due to perceived limitations which include:

1. The use of the lower limit of the CI (confidence interval) rather than the point estimate is not only introducing an optimistic perspective but is also systematically favouring drugs with a large CI and therefore a low certainty in results. We find the systematic bias not acceptable and not in concordance with standards for robust data in medical statistics and clinical epidemiology.

2. The focus on primary endpoints even if they are surrogate endpoints is assigning PFS (progression-free-survival) an equal weight compared to the patient-relevant endpoints of OS (overall survival) and QoL (quality of life). This is not in accordance with HTA (health technology assessment) standards of using PRO (patient-relevant outcomes) as opposed to surrogate outcomes, which are most often not validated for their actual clinical relevance. This is especially important in solid tumours with concerns with translating surrogate markers into overall survival/length of survival.

3. The upgrading due to increased QoL, but only rarely the downgrading of cancer drugs due to worsened QoL or (S)AE ≥ 3 (serious adverse events) and/or increased discontinuation of therapy introduces again a bias towards an optimistic perspective concentrating on efficacy and ignoring risks and adverse events.

4. Lastly, no rationale or weighted arguments are provided for the threshold-values.

As seen in Table 1, our scores deviate from ESMO due to using the point estimate instead of using the lower limit of the CI. In addition, degrading because of (S)AE or if only data on PFS is available, rather than only upgrading because of an improvement in QoL, was done. Our re-calculated deviation is on average 1-2 scores lower than the ESMO scoring. We tried to extract as many data as possible in the table to show that even using the rationale of ESMO-MCBS, some of the (optimistic) ESMO-scores are not based on their own rules (alone) and some oncology medicines are upgraded without transparent reason.

We therefore propose an adapted use of the ESMO-MCBS. This includes:

- use of only OS data - if primary or secondary endpoint data is available;
- use of only OS and QoL data in the non-curative (end of life) setting;
- downgrade -1, if only data on surrogate endpoints is available;
- use point estimates;
- down-/upgrade due to toxicity(S)AE incl. reduction of OS or changes in QoL;
- increase transparency with extracting SAE and therapy discontinuation data and reasons for up-/downgrading.

A structured and systematic approach that can discriminate between oncology medicines of higher value than others is most welcomed for assisting in the rational and appropriate use of limited public resources to deliver effective and affordable care. This is becoming more essential with increased prevalence rates world-wide.

References:

