Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Release of alkali metals during biomass thermal conversion

Cao, Wenhan and Li, Jun and Lue, Leo and Zhang, Xiaolei (2016) Release of alkali metals during biomass thermal conversion. Archives of Industrial Biotechnology, 1 (1). pp. 1-3.

Text (Cao-etal-AIB-2016-Release-of-alkali-metals-during-biomass-thermal)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (437kB) | Preview


Biomass has great potential to become an economic source of renewable energy; however, its high chlorine and alkali metal content may cause series problems (e.g. slagging and corrosion) thus limiting its utilization. This paper reviews the release of potassium during biomass thermal conversion. Organic potassium is released first when the temperature is relatively low, starting at about 473 K and slowing down at about 773 K; the release of inorganic potassium occurs with the increase of processing temperature. The potassium vapors are mainly in the form of KCl, KOH and K 2 SO 4 . In addition to the temperature, the properties of biomass feedstock, fuel-air ratio, pressure and heating rate also significantly influence the release rate of alkali metals. Future studies are required to develop accurate kinetic models of potassium release to address the ash related challenges when firing and co-firing biomass with high inherent alkali content.