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ABSTRACT  

Learning from the past has been recognised as an effective means to manage future challenges. This is particularly true 

for ship safety management in the maritime industry as the records of historical safety-related failures are generally 

accompanied by the losses of human lives, damage to the environment and the ships. However, the current “learning” 

practice is not rationalised to facilitate effective safety management both from design and operational points of view. By 

proposing a unique approach of “learning from the past”, this paper elaborates on a formal methodology towards ship 

safety management so that future risk control decisions can be made in an objective, transparent, and well-informed 

manner. 

 

1.  INTRODUCTION 

The long standing history of mankind’s civilisation 

represents a learning process of human beings to better 

appreciate and understand the universe. In the course of 

this process, significant effort has been devoted to learn 

from past experience and prepare for the upcoming 

challenges in diverse disciplines [1] [2] [3] [4]. This 

process is accelerated by the rapid advancement of 

computer technology in the past decades, e.g. database 

technology and high-performance computing. 

Particularly in recent years, the trend of recording 

historical operational records of specific domains and 

transforming them into pertinent business intelligence 

has become an increasingly important means for modern 

business to obtain an informational advantage [5] [6] [7] 

[8]. 

The maritime industry, playing a key role in the 

globalisation process, has also been deeply involved in 

collecting ship operational data with the aim to improve 

the operational performance. For instance, IHS is one of 

leading maritime data supplier in providing worldwide 

shipping-related information [9]. Moreover, as far as ship 

safety is concerned, operators are required to report and 

analyse their operational non-conformities and incidents 

in order to comply with the International Safety 

Management (ISM) code [10]. The latest adoption of the 

Casualty Investigation Code [11] at IMO, reached the 

culmination of the advocation of learning from the past. 

Despite these undertakings taking place originally at 

regulatory level, significant improvement has been 

achieved over the past decades, particularly in terms of 

the number of reported casualties worldwide [12]. 

Notwithstanding the above developments, the utilisation 

of the increasingly accumulated casualty data in a 

holistic and effective way has encountered various 

practical difficulties. As a result, at a global management 

level, such a learning practice can be best described as (i) 

rule-oriented, and (ii) case-specific. It is rule-oriented in 

a way that safety enhancement is sought through 

prescriptive legislation without clear goals and 

objectives. Potential revisions are carried forward within 

the regulatory framework itself, whilst the findings of 

root causes analyses hardly ever feed back to yards, 

operators, and designers directly. A similar situation has 

also been observed from an organisational perspective as 

the lessons learnt through the SMS compliance can be 

difficult to circulate within a wider maritime community. 

It is case-specific as experience gained in the past 

suggests that key changes of the existing maritime safety 

framework have been driven mainly by individual high-



profile accidents, whilst a large proportion of records are 

under-utilised and ignored. 

In this respect, the current state of affairs with regards to 

maritime casualty data is that there are very limited 

formatted variables in the databases, while the “gold” is 

still largely hidden in the descriptive text [9] [13]. As a 

result, the subsequent findings will be naturally restricted 

to descriptive recommendations with undetermined 

enhancements [14] and high-level trending charts [12] 

[15]. 

Furthermore, although it is possible to implement some 

of the sophisticated root cause analysis techniques, e.g. 

the spray diagram from Lloyd’s Register [16], the loss 

causation model from DNV Maritime Solutions [17], and 

the root cause analysis map from ABS [18], to identify a 

list of loopholes for each record in the casualty database, 

it is still practically difficult to justify the ensuing 

corrective actions in terms of quantifiable cost and 

benefits. 

Deriving from the aforementioned findings and on the 

basis of the philosophy of “learning from the past”, this 

paper aims to describe a formal methodology of ship 

safety management by deploying a new concept of 

maritime casualty database and advanced data analysis 

techniques.  A new concept for the development of 

maritime casualty databases is introduced in Section 2, 

followed by a brief description of pertinent data mining 

techniques to transform the data into probabilistic 

knowledge models in Section 3. Section 4 elaborates on 

the use of such models for risk management followed by 

a case study in Section 5, which demonstrates the  

applicability of the concept proposed. 

 

2.  A NEW CONCEPT OF MARITIME 

CASUALTY DATABASE 

2.1  APPROACH 

An effective safety management throughout the ship life-

cycle will be only achieved if its performance can be 

measured scientifically. Considering what constitutes 

ship safety, it is governed only by a handful of factors 

(undesirable events) which, when considered 

individually or in combination, define a limited set of 

scenarios, as illustrated in Figure 1. These factors 

represent major accident categories with calculable 

frequencies and consequences, which inherently control 

the life-cycle risk of a ship at sea. 

 

Figure 1: Sequence of Scenarios [19] 

In this respect, the term “total risk” of a ship has been put 

forward in [20]. The aim is to quantify the overall 

through-life safety level so that a tangible safety measure 

in risk lexicon can be readily employed for direct use in 

ship design and operation. As an example, in the case of 

passenger ships, a knowledge-intensive and safety-

critical ship type, investigations suggest that flooding- 

and fire-related scenarios comprise over 90% of the risk 

(regarding loss of life) and almost 100% of all the events 

leading to decisions to abandon the ship [21]. In this 

way, it becomes apparent that by addressing the two 

principal hazards, namely flooding (due to collision and 

grounding) and fire in a consistent manner, the total risk 

of a passenger ship can be estimated and managed. 

Considering what influences both the pre-casualty and 

post-casualty phases of principal hazards, as depicted in 

Figure 1, it is essential for the new database to contain 

key information of the following seven modules:  

 Vessel information: it aims to record the 

information about ship particulars that describing 

the key characteristics. This module should provide 

a throughout scan of the ship so that an overview 

can be gained and important information on ship 

parameters can be collected.  

 Voyage condition: historical tragedies suggest the 

environmental conditions play an important role for 

a fully-developed accident, hence, situation-specific 

variables (e.g. ship location, voyage phase, 

visibility, sea state, and wind speed) are included to 

describe the conditions of the surrounding 

environment. 

 Critical systems (Hull/Machinery/Equipment): as 

far as ship principal hazards are concerned, the 

failures of critical hull/machineries/equipments can 

be vital initiating events to their occurrence. In this 

respect, the critical systems the failure of which 

could potentially lead to the occurrence of the 

principal accidents are included, e.g. propulsion 



systems, hull structures, steering and navigational 

systems, and electrical systems. 

 Collision: for the prevention of collisions/contacts, 

great attention has been paid to the bridge design. 

This module distinguishes powered collisions and 

drifted collisions as the energy released from the 

two categories varies dramatically. Moreover, the 

sequence of a collision is broken into phases 

containing event detection, manoeuvre planning and 

manoeuvre execution.  

 Grounding: ship grounding shares notable 

similarities with the collision, where early detection 

plays a significant role on the prevention of its 

occurrence. Grounding is more sensitive to safety 

culture and practice of ship operators regarding 

route planning and updating.  

 Fire: the fire event module deals with the factors 

influencing various phases of a fully developed fire: 

ignition, containment, escalation, and evacuation. 

 Consequence: it is designed to capture 

consequencues to the passengers, crew, the 

environment and the ship herself. 

 

2.2  IDENTIFICATION OF DOMINANT 

VARIABLES  

In pursuit of the new maritime casualty database, the key 

element would be a list of parameters to be recorded for 

each of the aforementioned modules. Certainly it would 

be practically infeasible to record hundreds of thousands 

of elemental parameters that determine the exact safety 

level of a ship. Therefore, an alternative is needed. In the 

knowledge that the fundamental objective is to provide a 

transparent and well-informed platform for decision 

making, it will be much more efficient to focus on the 

dominant variables and achieve a fast approximation of 

the risk level with sufficient accuracy.  

A promising way is to rely on the latest understanding 

and up-to-date risk models, which take advantage of 

years or even decades of continuous effort and 

accumulation in understanding the underlying physical 

phenomena. Thus, an important assumption that can be 

made is that the variables included in the latest risk 

models, which are developed and refined through various 

research projects (HARDER, SAFEDOR, GOALDS, 

etc.) are sufficient to capture the key features of the main 

hazards of interest. 

In order to facilitate the process of dominant variables 

identification, a hierarchical decomposition approach is 

proposed to systematically break down the total risk and 

its constituent elements up to a stage where the physical 

parameters of significant importance to the safety 

performance can be identified.  In this way, the proposed 

database structure provides a much larger and necessary 

amount of data stored and analysed as formatted 

variables, following the decomposition of this 

information from the usually descriptive text of the 

current maritime databases, thus achieving the main 

objective for the provision of improved and enhanced 

maritime databases.  

To carry out this process, the emphasis is placed on the 

key risk contributors. For example, in the case of 

passenger ships, the total risk should be sought through 

analysing the principal hazards: collision, grounding and 

fire. Moreover, on the basis of the definition of the risk, 

its quantification of the concerning hazard can be 

estimated through the product of a number of 

probabilities defining critical scenarios and the ensuing 

societal consequences, as illustrated below [22]. 

𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 × 𝑃𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

× 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

× 𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  

𝑅𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑃𝑔𝑟𝑜𝑢𝑛𝑑 × 𝑃𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑔𝑟𝑜𝑢𝑛𝑑

× 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑔𝑟𝑜𝑢𝑛𝑑

× 𝐶𝑔𝑟𝑜𝑢𝑛𝑑 

𝑅𝑓𝑖𝑟𝑒 = 𝑃𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 × 𝑃𝑔𝑟𝑜𝑤𝑡ℎ|𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛

× 𝑃𝑒𝑠𝑐𝑎𝑙𝑎𝑡𝑖𝑜𝑛|𝑔𝑟𝑜𝑤𝑡ℎ|𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 × 𝐶𝑓𝑖𝑟𝑒  

Each of the aforementioned risk elements (i.e. 

probabilities and consequences) can be further 

decomposed into various safety performance aspects. 

The identification of pertinent safety performance 

parameters should be considered from the point of view 

of estimating the effectiveness of various preventive and 

mitigative measures. Table 1 presents such a process for 

the cases of collision and grounding.  

Concerted effort in the past decades in understanding 

these safety performance parameters suggests that they 

are influenced by a limited and dedicated ship design and 

operational issues, which are governed by a handful of 

ship (design) and operational parameters. Table 2 further 

exhibits such correlations concerning fire safety. 

 

 



 

 

Table 1: Links between Risk Components and Safety Performance Parameters concerning Collisions and Groundings 

Risk components 
Safety performance 

parameters 

𝑃𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 

𝑃𝑔𝑟𝑜𝑢𝑛𝑑 

Probability of 

collision/grounding 

Reliability of navigation 

Reliability of manoeuvrability 

𝑃𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 

𝑃𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑔𝑟𝑜𝑢𝑛𝑑  

Probability of water ingress 

due to collision/grounding 

Structural capacity (hull 

breach) 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒|𝑤𝑎𝑡𝑒𝑟_𝑖𝑛𝑔𝑟𝑒𝑠𝑠|𝑔𝑟𝑜𝑢𝑛𝑑 

Probability of failure 

(capsize/sinking/collapse) due 

to water ingress and 

collision/grounding 

Time to capsize/sink/collapse 

𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  

𝐶𝑔𝑟𝑜𝑢𝑛𝑑 
Severity of consequence 

Post-accident system 

availability 

Time required for 

abandonment 

 

 

Table 2: Links between Safety Performance Parameters and Detailed Design Issues for the Fire 

Safety performance parameters Design issues 

Space-specific ignition frequency Fire fuel load and layout 

Heat source and layout 

Reliability and effectiveness of detection 

system 

Detection system selection & layout 

Reliability and effectiveness of suppression 

system 

Suppression system selection & layout 

Time to reach untenable condition Fire load 

Ventilation system 

Boundary classes 

Post-accident system availability Shipboard system arrangement 

Time required for abandonment Escape route 

Internal layout 

LSA 

 

 

 

 

 

 

 

 



 

By doing so, the basic ship and operational parameters 

that play an important role in quantifying the 

aforementioned risk components can be identified, as 

illustrated in Figure 2. A unique advantage of such a 

structure is that the complexity of the problem under 

consideration can be greatly simplified as one can 

address a single design or operational issue at a time. 

Consequently, a new database platform containing the 

identified ship design and operational parameters can be 

developed for data collection. 

 

Figure 2: Links between Basic Parameters and Ship Total 

Risk 

 

3.  DATA PROCESSING 

The need for more sophisticated data analysis techniques 

is derived from the difficulties that classical regression 

analysis becomes inefficient to cope with a mathematical 

model containing more than a handful of variables at a 

time. The situation is exaggerated by the fact that 

physical casualty relevant parameters are often presented 

in discrete manner rather than continuous format (ship 

types, locations, onboard spaces, etc.). This has given 

rise to the use of data mining, which aims to transform a 

data set containing many variables into a meaningful and 

interpretable model through multivariate data analysis 

techniques. 

Due to the diversity of data mining techniques, the 

identification of the most adequate platform and the 

associated “mining” techniques are of great importance. 

In this respect, Bayesian networks (BNs) [23], offer a 

unique platform for fulfilling the intended goals. This is 

attributed to (i) their inherent capability for probability 

inference, (ii)  the transparency and the flexibility of 

presenting complex relationships, and (iii) to the 

foundation that has been laid in the maritime industry 

[24] [25]. 

A Bayesian Network is a tool capable of describing 

complex cause-and-effect relationships probabilistically 

by using intuitive visual representations. A generic 

Bayesian network model is comprised of a set of 

variables making up the nodes in the network, a set of 

directed links (with arrows) connecting the nodes and 

representing dependent relationships, and an array of 

probability density functions/conditional probability 

tables (CPT) associated with each node describing the 

probabilistic influence of its parents. The key feature of a 

Bayesian Network is the ability to form a risk-knowledge 

model that enables reasoning about the uncertainty of the 

situation it describes.  

Bayesian networks offer several advantages over 

conventional risk modelling techniques: 

 There is no need to assume independent 

relationships among events (as this is the case 

for the root events in a fault tree) as these can be 

described easily by directing arcs. 

 The intuitive visual presentation depicting 

causal relationships facilitates a reasonably 

realistic model that is logical, easy to understand 

and validate.   

 Different sources of information can be 

deployed concurrently for the population of 

CPTs in one model without conflict.  

 Bayesian networks can be easily updated locally 

with new information, without the need to 

recreate the whole structure of the network 

 The information entailed in a network is 

computed and propagated probabilistically, a 

feature which is consistent with the risk 

assessment paradigm. 

 The computations can be carried out using 

readily available tools, irrespective of the size 

and complexity of a model. 

 If the variables in the model are the key 

indicators/measures of a selected domain, the 

model would become a useful decision-support 

tool.  

Despite the increasing applications of Bayesian networks 

in the maritime industry, questions remained to be 

answered are brought forth: “How to rationally identify 

Risk 

Safety performance parameters 

Ship 

parameters 

Operational 

issues 

Operational 

parameters 

Design 

issues 

Situation-specific 

parameters 



the complex causality relationships in the case of more 

than a few variables?” and “How to objectively quantify 

large conditional probability tables?” 

In this respect, it is found that the applications also lead 

to mountainous research activities in identifying the 

influence relationships among the variables from 

observational records. Relevant learning techniques are 

developed so that a network can be constructed with 

minimal subjective intervention. Apart from eliciting the 

structure of a Bayesian network model from the data, 

formalised methods for populating the conditional 

probability tables have also been developed concerning 

the quantification of the network. With the detailed 

mathematical techniques described in [26], the following 

section briefly summarises the procedures to be 

followed. 

 

3.1 BAYESIAN STRUCTURE LEARNING 

The current approaches towards the learning of a 

network structure have been widely classified as: 

constraint-based learning and scoring-based learning, in 

which distinct principles are adopted.  

Constraint-based learning starts with the identification of 

dependent and conditional independent relationships 

among various variable combinations by using statistical 

measures. The traditional approach is to make null 

hypothesis testing of dependencies between two 

variables so as to identify the significance of an 

association which will be checked against a predefined 

confidence level. This approach is feasible in the case of 

two variables, but more advanced mathematical models 

are needed to identify conditional independent 

relationships among three or more variables. Under such 

circumstance, two mathematical models can be deployed 

for dependency analysis: logistic regression model and 

loglinear model.  

With a collection of independent and conditional 

independent relationships, the next step is to construct a 

Bayesian network skeleton that entails all the discovered 

relationships. This can be achieved by utilising proper 

learning algorithm. One of the most widely accepted 

approaches, known as PC algorithm [27], was selected 

for Bayesian network structure induction. The PC 

algorithm is briefly introduced here: 

 Start with a complete undirected graph in which 

each variable is linked with all other variables 

with undirected arcs. 

 Iterate throughout the graph to remove the link, 

say (X − Y) from the graph if there is I(X, Y|S), 

where S denotes any node of the set of adjacent 

nodes of X and Y. I(X, Y|S) indicates that X and 

Y are conditionally independent given S. 

 Iterate throughout the network with each 

uncoupled meeting (X − Y − Z)  and orient as 

(X → Y ← Z)  if X  and Z  are found to be 

independent given a set of variables which do 

not contain Y. For the remaining links, the arrow 

should be directed in a way that no more “head-

to-head” link will be created. 

In contrast to the constraint-based learning, the scoring-

based learning focuses on the identification of a Bayesian 

network structure as an integral unit. The principle is to 

evaluate the superiorities of all possible network 

skeletons using dedicated criterion functions and to select 

the one receiving the highest score. This implies that two 

components have to be properly addressed: a scoring 

criterion and a searching algorithm. Various score 

functions has been developed for acting as the criterion, 

e.g. Bayesian scoring criterion [28], Bayesian 

information criterion [29], Akaike information criterion 

[30], Minimum Description Length [31]. To obtain the 

optimal BN model, a heuristic searching algorithm can 

be adopted for generating all promising network patterns 

for evaluation [32]. 

 

3.2 BAYESIAN PARAMETERS LEARNING 

The main objective of parameters learning is to quantify 

the obtained network skeleton with conditional 

probabilities, which will be derived purely on the basis of 

the collected data. This is achieved by assuming the 

various statuses of each parameter in the network are 

Dirichlet distributed [28]. In this way, the distribution 

function can be updated by additively taking into account 

of new evidence in the data. 

4. RISK MANAGEMENT  

Following the introduction of a new casualty database 

and the ensuing data mining techniques, it becomes 

straightforward to transform the collected maritime 

casualty data into probabilistic models which are 

materialised in the form of a Bayesian network. 

Nevertheless, it is important to ensure that the obtained 

models are intelligent enough for the purposes of the 

decision making process of safety management.  

On the other hand, it is appreciated that the core activity 

of safety management is to identify cost-effective risk 



control options. The measures should focus on reducing 

the frequency of occurrence of a hazard (preventive) or 

mitigating the ensuing consequences. A high level list of 

generic risk control options is illustrated in Figure 3. 

 

 

Figure 3: Generic Risk Control Options 

Broad classification of the listed risk control options 

suggests that two types of variables influence the risk 

level of a specific design: design parameters and 

operational parameters. The design parameters refer to 

those parameters/features that can be controlled at the 

early design stage and determine the capability of a 

design to withstand/sustain accidents through preventive 

and/or mitigative means, e.g. installation of ECDIS 

system, watertight subdivisions, fire detection systems, 

suppression systems. In other words, there are parameters 

that are capable of leading to designs which are more 

tolerable to software and hardware failure and more 

resistive to catastrophic consequences following the 

initiation of an accident. On the other hand, the 

operational parameters are concerned with general 

practice and procedures to be followed during the ship 

operation stage for reducing the exposure to risky 

circumstances. For instance, scheduled maintenance, 

regular training of crews, establishment of contingency 

plan, etc., are all typical examples of operational means 

for safety assurance. 

It is noted that apart from design and operational 

parameters there are certain environmental variables that 

influence the risk level as well, such as traffic 

characteristics, geography, time of the day, sea state, etc. 

These parameters can be referred to situation-specific 

parameters as a combination of different statuses would 

evidently lead to a unique analysing situation.  

Deriving from the above, as the parameters recorded in 

the database focus mainly on the dominant influential 

design and operational factors and the timeline 

development of the hazards under consideration, it is 

important to realise that the subsequently obtained 

Bayesian network models can easily accommodate the 

sequential events that lead to the manifestation of a 

specific hazard. For instance, they contain the occurrence 

of an event, its escalation, and ultimately, the possible 

consequences. As the information is stored 

probabilistically, such a model can be regarded as a 

generic risk model for risk level estimation. From this 

point of view, a Bayesian network model is equivalent to 

a conventional risk contribution tree (i.e. fault tree, event 

tree) for risk assessment.   

On the other hand, with ship design, operational and 

situation-specific parameters recorded in the database 

and utilised for data processing, their influences on the 

scenario-defining variables in the aforementioned risk 

models can be established without much difficulty. In 

this case, the Bayesian network model can be regarded as 

a risk-knowledge model, where the knowledge of the 

interrelationships between manageable (physical) entities 

and the key risk components are stored and expressed 

probabilistically. In this way, the risk level of the 

interested hazard is ultimately conditional on the statuses 

of these three groups of parameters: ship design, 

operational, and situation-specific parameters. Figure 4 

exhibits conceptually such unique characteristics of 

Bayesian network models.  

 

 

Figure 4: A Conceptual Bayesian Network Model 

On the basis of the foregoing, it becomes apparent that 

through the methodology of employing the new database 

and pertinent data mining techniques, the obtained 

Bayesian network model can be used as a tool for risk 

level estimation. In the meantime, it also facilitates a fast 

evaluation of various risk control options for effective 

decision making. A unique advantage of such an 

approach is that decisions can be made on a transparent 

and objective basis. 

 

5. A CASE STUDY 

Ship 
parameters 

Operational 
parameters 

Occurrence Escalation Consequence

Risk models

Risk knowledge models

Situation-
specific 

parameters 



In pursuing a rational treatment of fire risk at the design 

stage, the proposed methodology will be demonstrated 

with a case study that starts with the identification of 

dominant variables, the database development, the BN 

model learning, the design of alternative scenario 

generation, and the decision-making on the basis of the 

whole process. The important variables are identified and 

listed as follows: 

 Date of event 

 Time of event 

 Vessel location 

 Weather contribution 

 Detection means 

 Suppression means 

 Ventilation system status 

 Fire door status 

 Space occupancy status 

 Crew status 

 Boundary cooling status 

 Emergency response failure 

 Containment failure 

 Ignition in adjacent space 

A significant amount of operational fire accident/incident 

data (covering a reporting period of 3-4 years) is used. 

The data set was imported into the BN by a learning 

program developed in statistical computing software R 

(http://www.r-project.org/). Both constraint-based and 

score-based learning algorithms have been examined 

together with the parameter learning. The resulting 

network model is shown in Figure 5. Initial result 

suggests a good agreement with the output from similar 

data mining tools. 

 

Figure 5: Constructed Bayesian Network Model 

(Constraint-Based Learning) 

For this specific case, the trained Bayesian network can 

be considered as a risk sub-model and a risk knowledge 

sub-model that is depicting certain phases of a fully 

developed fire event. With respect to the risk knowledge 

model, it includes design, operational, and situation-

specific parameters. The detailed classification is 

tabulated in Table 3.  

Table 3: Variables of the Developed BN Model 

Risk model  Variables 

 SOLAS space category 

Emergency response failure 

Containment failure 

Ignition in adjacent space 

Risk 

knowledge 

model 

Variables 

Ship parameters SOLAS space category 

Automatic detection 

Automatic suppression 

Ventilation status 

Operational 

parameter 

Manual detection 

Manual suppression 

Fire door status 

Crew attendance 

Guest attendance 

Ventilation status 

Boundary cooling 

Situation-

specific 

parameter 

Weather contribution 

Time of the day 

Ship location 

For illustration purposes, the obtained Bayesian network 

model is utilised for risk management at the operational 

stage. Nevertheless, its application can be easily 

extended to risk management during the design stage. 

A number of risk control solutions can be generated for 

protecting the accommodation spaces, with particular 

reference to crew and passenger cabins. Main attention is 

paid to the prevention of cabin fire and mitigation of the 

ensuing consequences. Table 4 exhibits three control 

options in addressing the hazards in question. 

Table 4: Risk Control Solutions (SOLAS Space Category 

7, Accommodation Space: Cabin) 

 Solution Explanation 

1 Improve 

patrolling 

Fire started at night is more likely to 

escalate and lead to more serious 

consequence as the response time for 

fire detection and fighting can be 

significantly delayed; improving 

patrolling would shorten such delay  

2 Invest in 

fireproof 

The collected historical fire incident 

data suggests that bin-related fire 

http://www.r-project.org/


bins comprises 45% of all cabin fire; hence, 

by investing in fireproof bins to cut off 

the oxygen supply, it is expected to 

suffocate such fires at an early stage 

3 Crew 

awareness 

training 

The collected historical fire incident 

data suggests that fire started in crew 

cabins comprises more than 40% of all 

cabin fires; hence, by conducting fire 

awareness training, both fire 

prevention and mitigation performance 

can be improved  

In pursuing a rational process that enables a scientific 

treatment of every aspect of ship performance, a 

transparent and systematic decision support framework 

plays a vital role. Regarding this, the approach proposed 

in [33], was adopted, in which pair-wise comparisons of 

risk control options with respect to their economic, 

technical, and safety performance are conducted.  

For this specific case, the impact of various control 

options on the overall fire risk is linked through the 

variables “SOLAS space category (ignition frequencies)” 

and “manual detection”, as shown in Figure 6. To 

quantify the associated conditional probability tables, 

domain knowledge can be derived from pertinent 

historical data or dedicated mathematical models. For 

demonstration, it is assumed that “solution 1” would 

have generally 20% improvement to the manual 

detection system in terms of the effectiveness of 

detecting fire incidents in cabin spaces, “solution 2” is 

estimated to lower the fire ignition frequency by 10%, 

and “solution 3” would improve the manual detection 

effectiveness by 10%. The ultimate influence can be 

observed through the node 

“Emergency_response_failure”, as illustrated in Table 5. 

 
Figure 6: Details of the Bayesian Network Model (Risk 

Control Solutions) 

Table 5: Results of the Bayesian Network Inference 

 Pemergency_failure|ignition 

Solution 1 0.00306 

Solution 2 0.00264 

Solution 3 0.00299 

The subsequent pair-wise comparison with respect to 

safety performance is tabulated in Table 6, where the 

performance of risk control options is reflected through 

the estimated priorities. 

Table 6: Pair-Wise Comparisons  

 
S1 S2 S3 Priority 

S1 1 0.863 0.977 0.314 

S2 1.159 1 1.133 0.364 

S3 1.023 0.883 1 0.322 

Apart from safety performance, there is also a need to 

consider other aspects in measuring the merits of various 

alternatives. The most important indicators for this 

specific application are technical indicators, incurred cost 

and safety. Similar study can be carried out accordingly. 

Consequently, priorities can be synthesised with overall 

performance evaluated, as shown in Table 7. Weighting 

factors can be assigned as well to stress the importance 

of their safety orientation. Figure 7 further exhibits the 

performance of three risk control solutions in safety, 

technical and cost aspects. 

 

 

 

Table 7: Priority Synthesis (Emphasis on Safety)  

 

Safety Technical Cost Priority 

 

0.50 0.25 0.25  

S1 0.314 0.263 0.429 0.3301 

S2 0.364 0.389 0.214 0.3330 

S3 0.322 0.347 0.357 0.3369 

 



 

Figure 7: Risk Control Solutions Evaluation Diagram 

(Sample) 

 

6. CONCLUSION 

A unique methodology towards safety management has 

been presented in this paper. This is achieved by 

following the philosophy of “learning from the past, to 

manage the future risk”.  Main emphasis is placed on the 

development of new casualty database system, the 

subsequent model training and applications within the 

context of safety management. The resultant situation is 

an objective evaluation of various risk control options 

that facilitate the decision-making process both at the 

design and operation stages. This will contribute 

positively to the ultimate goal of effective safety 

management. 

Future development will focus on the development of an 

integrated risk management environment, in which the 

user interface for data input, relevant databases, data 

mining techniques, and graphic presentations of risk 

index would be accommodated.   
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