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ABSTRACT 

This paper describes a simulation-based decision 

support tool, MERIT, which has been developed to 

assist in the assessment of renewable energy systems 

by focusing on the degree of match achievable between 

energy demand and supply.  Models are described for 

the prediction of the performance of PV, wind and 

battery technologies. These models are based on 

manufacturers� specifications, location-related 

parameters and hourly weather data.  The means of 

appraising the quality of match is outlined and 

examples are given of the application of the tool at the 

individual building and community levels. 

INTRODUCTION 
Recent political shifts towards greater renewable 

energy (RE) utilisation has resulted in RE technologies 

being utilised at two levels: large scale systems 

integrated into the electricity supply infrastructure (i.e. 

distributed generation); and small scale systems 

integrated with a building�s electricity supply network 

(i.e. embedded generation). In the former case, it is 

estimated that capacities of up to 25% of maximum 

demand can be accommodated before technical 

difficulties begin to occur with the management and 

operation of the supply network (Electricity 

Association Workshop, 1999). In the later case, to 

prevent network problems being created, the approach 

being adopted is to utilise the RE-derived power to 

displace the power that would otherwise be taken from 

the local supply network. Since the RE technologies 

being developed for building integration are stochastic, 

this creates problems for mechanical and electrical 

design in relation to: 

• the selection of technology types and capacities, 

and physical size of the RE system to be installed; 

• local utilisation of the variable power delivered 

throughout the year; and 

 

 

 

• satisfying the likely requirement for, and capacity 

of, energy storage if export is to be avoided. 

 

A simulation-based, decision-support tool has been 

developed as part of an EPSRC research project 

(Clarke et al. 2001) addressing the impact of embedded 

generation on a building�s energy performance and the 

ability of the approach to displace demands exerted on 

the public electricity supply network. 

SYSTEM ARCHITECTURE 
The MERIT system (Born 2001) has been developed in 

Visual C++ as a multiple-document application within 

which linked windows relate to the different aspects 

required to define a supply/demand matching study: 

namely, the specification of weather and simulation 

period parameters, demand profiles, fuel supply 

systems (e.g. anaerobic digestion, fermentation etc) and 

RE/auxiliary power delivery systems.   

Figure 1 depicts the system framework; which uses 

open database connectivity to communicate with a 

remote SQL database via the Internet. This enables data 

exchange with other energy analysis tools, for example: 

• building simulation tools can be used to provide 

virtual demand profiles relating to scenarios for 

which there are no real data; 

• energy monitoring and targeting software supports 

the analysis of time series data corresponding to the 

consumption of fuel and power at the individual 

meter level; and 

• GIS software can access the database and present 

energy supply/demand matching data enabling 

further RE systems analysis based, for example, on 

environmental sensitivity. 



Auxiliary

Renewable

Fuel Supply

Demand

Climate

MERIT

Matching

Database

Building

Simulation

Software

Energy

Monitoring

and

Targeting

Software

GIS

Software

 

Figure 1: The MERIT framework. 

RE SYSTEMS SIMULATION 
RE systems algorithms have been developed to 

simulate power production based on manufacturers� 

specifications, locational parameters and weather data.  

Crystalline Photovoltaic Devices 

Different PV modelling techniques are available, which 

can be used to determine a specific PV system�s supply 

profile. Detailed models developed for cell design 

purposes (Maotro and Araujo 1997) are not suitable 

here as they require specialised input parameters not 

readily available. Because the electrical behaviour of a 

PV system is highly dependent on incidental solar flux 

and thermal parameters, models solely based on 

equivalent electrical circuits (Katan et al 1995) are not 

capable of determining variations in supply profiles 

resulting from changes in system configurations, e.g. 

encapsulation and hybrid applications. Other 

approaches, based on curve-fitting techniques (Russell 

1994, Kelly 1998) determined through 

experimentation, are not generic in nature.  

The model as implemented is based on a consideration 

of solar geometry to calculate the angle of incidence of 

solar radiation on the PV surface (Duffie and Beckman 

1974). To estimate the surface radiation balance, 

absorption, reflection and transmission coefficients are 

required as a function of angle of incidence. 

Experiments have shown that coefficient dependence 

on wavelength is relatively weak for a typical PV 

module (Preu et al 1995). By neglecting this 

dependence, it is possible to quantify the fraction of 

solar radiation absorbed in the silicon layer.  A thermal 

energy balance model is then employed to evaluate the 

panel temperature, which directly affects the power 

capacity of the cell. Finally, an equivalent electrical 

model is used to determine the supply.  

A linear correlation exists between increases in PV cell 

temperature and reduction in open circuit voltage, 

which in turn reduces the power output. A temperature 

increase from 40°C to 150°C can reduce the power 

output by 60% (Decher 1997). To quantify the 

electrical output from a PV system it is therefore vital 

to predict the panel temperature. PV-hybrid systems 

recover heat from the module, reducing the panel 

temperature and simultaneously producing a source of 

low grade thermal energy. The heat available from 

hybrid systems can subsequently be used in assessing 

the match between thermal supply and demand. If a 

hybrid system is specified, the radiant exchange with 

the back wall, and convective heat losses from the 

panel to the air gap are considered. When modules are 

configured without heat recovery these terms are 

omitted, leaving only the radiation exchanges with the 

sun and sky, convective heat losses due to wind 

conditions, and heat loss through power extraction, to 

be considered. The first stage of the process involves 

the use of the Newton-Raphson method to solve the 

explicit energy balance equation: 

 

where T is the unknown future panel temperature (K), 

m the mass of the silicon layer (kg), c the specific heat 

of silicon (J/kgK), ∆Tthe change in panel temperature 

(K), Ta the ambient temperature (K), Tsky the sky 

temperature (K), Twall the temperature of the wall (K), 

QS the radiant exchange with the wall (W), Qpow   

the heat removed in power production (W), ε the 

emissivity of the PV backing, εwall  the emissivity of the 

wall, A the surface area of PV (m2), VF  the view 

factor, σ the Stephan Botzmann constant (5.669 x 10-8    

W/m2-K4), hwind the convective heat transfer coefficient 

(W/m2K) and hg  the temperature dependant gap 

convective heat transfer coefficient (W/m2K). 

 

The second stage involves the use of an equivalent 

electrical circuit to model the electrical output from a 

PV cell, where: 

• the p-n junction is represented by a current source, 

whose output is dependent on the photon flux; 

• the current through the diode is used to represent 

recombining hole and electron pairs, which reduces 

the output from the cell; 
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• the cells internal resistance is in series with the load 

resistance; and 

• the shunt in parallel with the p-n junction is the 

intrinsic self-shortening of the cell, which for 

silicon cells is usually small enough to be 

negligible.  

 

The inclusion of the shunt resistance enables the 

modelling of amorphous cells (Fry 1998).  This 

equivalent circuit is used to evaluate the dark and 

source currents, which enables the power output from a 

cell to be predicted.  

 

In the absence of a photon flux reaching the p-n 

junction, a current is established, known as the dark 

current, Io, which is defined as (Decher, 1997): 

where e is the electron charge (1.602 x 10-19 Coulomb), 

me the electron mass (9.109 x 10-31 kg), h Planck�s 

constant (6.626 x 10-34 kg), µh the hole diffusion 

velocity, µe the electron diffusion velocity, σe the 

electrical conductivity for electrons, Vg the band gap 

(1.1 eV for silicon), k Boltzmann�s constant (1.381 x 

10-23 J/K) and T the cell temperature (K). 

 

Since specific material property parameters required 

for dark current evaluation (e.g. hole and electron 

diffusion velocities) are typically not available, a single 

material parameter can be established from the 

manufacturers� performance data at standard test 

conditions (STC), i.e.1000W/m2 irradiation and 25ºC 

cell temperature. Since source current is linearly 

dependent on the absorbed solar radiation and module 

temperature this linear relationship can be used in the 

evaluation process. Since the intensity of solar 

radiation available at the p-n junction at STC and 

operating conditions will be different, it is necessary to 

quantify losses in intensity in order to make use of the 

linear current-radiation relationship. The source current 

density, in the case of silicon, is known to increase with 

temperature at a rate of 10-4A.m-2K-1 (Decher 1997). 

This figure has been used to account for changes in 

current resulting from a deviation in the STC 

temperature. The following equation is used to predict 

the source current for silicon cells. 

 

 

 

 

where ISTC is the short circuit current at STC, QSTC the 

STC irradiance, R(0)  the reflection losses at zero 

incidence, Q  the predicted solar radiation, R the 

predicted reflection losses, T the predicted panel 

temperature, TSTC STC temperature and Ap the module 

area. 

 

The load current and voltage across the external load is 

calculated using the following equations.(Decher 

1997): 

 

 

 

 

 

The power output is always calculated for the PV 

system operating at its maximum power point. This 

assumption is reasonable as building-integrated PV 

systems nearly all employ a maximum power point 

tracker (Fry 1998). An implicit expression for the ratio 

of supply current to the dark current is solved using the 

Newton-Raphson technique to provide a solution for 

the current flowing through a particular load resistance. 

The corresponding voltage is calculated from the fill 

factor, which enables the power output from a single 

cell to be determined. This is scaled according to the 

module configuration and the number of modules 

contained within a system.  Typically, a PV system will 

be operating in conjunction with an inverter. A detailed 

electrical model of the inverter, which accounts for the 

switching losses and device impedance, requires 

information that is not readily available. Consequently, 

an approximation has been incorporated based on a 

typical inverter performance curve. The approximation 

accounts for the losses in efficiency at low percentage 

loading.  

Wind Energy Conversion Devices 

The primary objectives in modelling wind systems are 

similar to PV: the model should be applicable to a 

variety of wind energy conversion systems; and the 

inputs to the model should be obtainable from 

manufacturers� specifications. Accurate and reliable 

prediction of a wind turbine�s aerodynamic 

performance requires detailed data about wind flow, 

aerodynamic profile and turbine design, to account for 

the many factors impacting on performance. A detailed 

model exists (Muljadi et al 1998) to predict high and 

low speed shaft torques as a function of time. However, 

this models require data such as blade geometry, rotor 

inertia, drive-train inertia, and stiffness and damping of 

the rotating shafts. The drive train stiffness of a 

particular turbine dictates whether dynamics need to be 

included, and the pitch actuation system used will 
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determine the actuator dynamics (Pierce and Fingersh 

1998).  The requirement to model performance based 

on manufacturers� data and climate parameters 

constrain the approach by neglecting the fundamentals 

of detailed aerodynamic performance. Oversimplified 

approaches are also unsuitable, such as considering 

only rated power production for wind speeds with 

sufficient velocity, and neglecting any power 

production in the run up to rated power (Enslin and 

Potgieter 1996), or calculating power output assuming 

a constant coefficient of performance (Ramirez 1998).  

The approach adopted in MERIT (Child et al 1996) 

calculates power output using a turbine�s empirical 

wind power curve as a look-up table. This method is 

employed for all but ducted wind devices (Webster 

1979) for which no manufacturers� data exists.   

A number of parameters, which are independent of the 

turbine type are required in the performance 

calculations including blade swept area, turbine (hub) 

height and the reference air density used by 

manufacturers to produce the empirical power curve. 

All parameters can be obtained from power curves, 

with the exception of a ducted wind turbine where 

turbine orientation is the only input parameter required. 

Wind speed data is corrected for surrounding surface 

roughnesses and proposed turbine height (Troen and 

Petersen 1991). These corrected wind speeds are used 

to estimate corresponding power outputs, which are 

then corrected to account for air density variations. 

This correction is based solely on temperature 

variations assuming constant atmospheric pressure.   

The algorithm developed to predict the performance of 

ducted wind turbines was derived from an analysis of 

field trial data and obtained for a prototype tested at the 

National Wind Turbine Test Centre (Grant et al 1994). 

These data show the power output to be dependent on 

both wind speed and wind direction. A correction 

factor was evaluated to include the effects of wind 

angle of incidence on power output.  Increases in 

angular incidence reduce power outputs, with angles 

greater than 75 degrees resulting in the cessation of 

power production. The magnitude of the reduction in 

power output is also proportional to the wind speed. 

The correction factor for misalignment was applied to 

the wind speed to obtain an expression for power as 

given in the following equation. Clearly, the kinetic 

energy in the wind available at the rotor swept area is 

proportional to the angle of incidence, with obtuse 

angles reducing the wind power at the rotor. For zero 

angles of incidence the wind speed at the rotor is the 

actual wind speed, and as the angle increases the 

effective wind speed is reduced. 

 

 

 

where Vc is the corrected wind speed at the rotor, Vw 

the wind speed, θ the angle of misalignment, and θmax 

the maximum angle of misalignment (75 degrees). 

 

The power of the wind at the rotor can be calculated 

from 

 

 

 

where Pw is the power of the wind at the rotor (W),  ρ 

the density of air (kg/m3), A the rotor swept area (m2), 

Vcthe corrected wind speed (m/s). 

 

Regression analysis performed on the calculated power 

in the wind at the rotor, and the power output from the 

turbine, was used to ascertain the relationship between 

these two power characteristics, which essentially 

describes a function of the coefficient of performance, 

Cp. The regression polynomial from this analysis was 

valid for corrected wind speeds up to approximately 

22m/s. Corrected wind speeds greater than this could 

be seen to increase the power output from the turbine in 

a linear manner.  

The analysis described gave rise to the following 

modelling technique used to predict the power output 

from a ducted wind turbine. Firstly, any wind incidence 

angles greater than 75 degrees result in zero power 

output. Provided the angle of incidence is within this 

upper limit, the wind speed is corrected to account for 

misalignment and this effective wind speed is used to 

calculate the power in the wind at the rotor. For wind 

powers greater than the limiting value of 3.5 kW, the 

turbine power output is determined from 

 

while for other conditions, it is determined from 

 

where Pt is the power output of the turbine (W) and Pw 

the power of the wind at the rotor (W) 

 

Powers exceeding the limiting value are due to 

conditions of significant turbulence being induced, 
which inhibits the ability of the turbine to extract the 

power available. 

STORAGE SIMULATION  
In order to assess the impact of storage on the ability of 

a renewable energy system to meet demand, a model 

for a lead-acid rechargeable battery was developed.  
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Detailed models examining the various electro-

chemical and physical processes occurring within 

batteries (Newman and Tiedemann 1997, Notten et al 

1998) require specific data not normally provided by 

manufacturers.  Other models based on over-simplified 

assumptions, e.g. constant discharge efficiency (Child 

et al 1996), require the determination of empirical 

values through laboratory testing (Protogeropoulos et 

al 1994, Morgan et al 1997).  The battery model 

developed in this work is generic, is based on 

manufacturers� data and assumes the battery system to 

be operating in conjunction with a charge regulator 

whose function is to regulate both the charging voltage 

and current to prevent battery damage. 

The power delivered or absorbed by a battery is 

dependent on its open circuit voltage, the discharge/ 

charge current and the internal resistance. This model 

is based on the relationship between open circuit 

voltage and state of charge of a single cell. Typical 

open circuit voltage and state of charge data was used 

to obtain a mapping function between these two 

parameters. A regression analysis of the published data 

led to the derivation of a 6th order polynomial function. 

As batteries consist of a number of series connected 

cells, the cell voltage may be scaled to represent any 

battery configuration.  

During battery discharge, Thevinin�s theorem (Davis 

1992) is employed to convert the power required of the 

battery into a current.  The level of charge stored in the 

battery will dictate whether the current requirement can 

be met. The charge stored in a fully charged battery is 

described by its capacity, which is a function of the 

discharge current. A battery will deliver less energy the 

quicker it is discharged. This phenomenon is the 

Peukert Effect, which describes declining capacity at 

increasing rates of discharge as a logarithmic curve 

(Ure 1998). Batteries can be described by their Peukert 

exponent values, which are directly related to the 

internal resistance of the battery. The relationship 

between battery capacity and rate of discharge is 

obtained from 

 

where C is the battery capacity (Ahrs) and t the time to 

full discharge (hours). The constants A and B will vary 

with different battery configurations and internal 

resistances, and can be evaluated using two different 

capacity values (C1 and C2) specified for different 

discharge rates (t1 and t2). 

The process for calculating the charge stored within the 

battery assumes the battery is fully charged initially 

and it�s capacity for any given discharge current is 

known. To determine the actual charge, the capacity for 

a given discharge current is multiplied by the 

percentage state of charge. Knowing the charge to be 

supplied and the charge stored in the battery, the 

resultant charge to be supplied can be calculated.  This 

resultant charge is compared to the charge at a 

specified deep discharge level to determine whether the 

battery charge control system will allow this rate of 

discharge current. Where the resultant charge is less 

than the battery�s deep-discharge rating, an iterative 

process is initiated that gradually decreases the 

discharge current requirement to a level the battery is 

capable of supplying without discharging below the 

deep discharge level. The power dissipated to the load, 

P, is calculated using the following equation where I 

and V are the current and voltage at the load and r is 

the batteries internal resistance.  The resulting state of 

charge mapped to the corresponding open-circuit 

voltage. 

 

 

Battery charging is modelled assuming the use of a 

charge regulator designed to prevent overcharging and 

according to the phase of charge. The bulk-charging 

phase is modelled by assuming the maximum charging 

current is supplied to a battery when its state of charge 

is below 75%. No distinction is made between 

absorption and float charge phases, and the charging 

current is modelled as a decreasing exponential as the 

battery�s ability to accept charge is reduced: 

 

 

Where Ic  is the charging current required at time 

t(hours), Imax the maximum charging current (A), t   

the time for the current to decay from Imax to Ic (hrs). 

 

In order to predict the charge accepted by a battery, the 

current at the beginning and end of a charging interval 

must be evaluated. To do this two assumptions are 

made: the charge stored in a fully charged battery is 

assumed to be that of the battery�s capacity rated at 20 

hours; and the charge required at the beginning of the 

charging period is assumed to be that required to 

recharge the battery fully within the given charge 

interval.  Substituting this ideal charging current into 

the previous equation, enables the corresponding 

charge time to be established as a function of the 

change in charge, ∆Q: 

The current available for battery charging can be found 

by solving I. Where the current available is less than 

that required, it is assumed that all the charge delivered 

is accepted. Where the current is greater than that 

required, only the proportion required is used, thereby 
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assuming a charge controller is being used.  The state 

of charge after charging is calculated as a percentage of 

the fully charged condition, and a mapping function is 

used to determine the open-circuit voltage. The power 

used, in charging the battery may then be calculated. 

 

Other factors influencing battery performance include: 

self discharge, depth of discharge, temperature and 

battery configurations.  Assuming the rate of self 

discharge specified by manufacturers to be linear, 

effects of self discharge can be incorporated when the 

battery is neither charging nor discharging.  

Operating temperatures can affect a battery�s 

performance in a number of ways. Accounting for 

temperature effects is further complicated by the size of 

a battery bank (i.e. its thermal mass) and any insulation 

used to protect a battery from temperature fluctuations. 

The effect of temperature on battery capacity is 

assumed to be linear between temperatures of -20°C 

and 20°C and also between 20°C and 60°C, but at 

different rates. These linear temperature effects are 

applied to the two rated capacities used to define a 

battery, at the beginning of every time-step calculation.  

Since these capacities are subsequently used in 

modelling all modes of battery operation, any 

temperature effects are accounted for. Battery 

discharge rates are evaluated utilising rated capacities. 

Battery state of charge is modelled as a percentage of 

the fully charged capacity, rated at 20hrs, to which 

temperature effects are applied. The state-of charge is 

mapped to battery voltage, which ensures temperature 

effects on voltage are incorporated. Battery charging 

currents are assumed to be unaffected by temperature 

since temperature compensation is included in the 

majority of battery charge control systems.  However 

the effect of applying a certain charging current over a 

period of time will vary depending on temperature, as 

the amount of charge stored by the battery varies with 

temperature. Finally, self-discharge is modelled as a 

percentage reduction in capacity, therefore any 

percentage change in a temperature-affected capacity 

will account for any effects in self discharge.   

This analysis relates to a single battery. For battery 

banks, including multiple batteries connected in series 

or parallel, standard electrical circuit theory is 

employed to model the effects of configurations. 

Identical batteries connected in series maintain the 

same capacity as a single battery.  The total internal 

resistance is the sum of the internal resistances of the 

batteries and the total open-circuit-voltage is the sum of 

the open-circuit voltages. Connecting secondary cells 

in parallel in theory leads to greater current capacity. In 

practice, however, poor current sharing during both 

charging and discharging can occur. The effects of this 

phenomenon are not accounted for and parallel 

batteries are modelled theoretically. This results in the 

same open-circuit voltages as a single battery, a total 

capacity equal to the sum of the capacities and a 

reduced internal resistance. 

MATCH ASSESMENT  
The matching of supply options to demand profiles, 

explores the extent to which RE technologies can 

satisfy demand and identifies the storage capacity 

required to improve the match.  

MERIT reports the match both graphically and with the 

use of statistical indices.  It has the facility to conduct 

an automated search in order to identify those 

combinations that best match user-specified search 

criteria. The automated search facility activates data 

processing techniques which numerically assess the 

demand and supply, while excluding auxiliary systems 

data, in order to performance benchmark each match 

via a match assessment. Following this, a search 

ordering process presents the possible matches in order 

from best to worst. 

The statistical indices used in assessing the match 

include Spearman�s Rank Correlation Coefficient 

[Scheaffer and McClave 1982] to establish the phase 

matching between the demand and supply streams and 

an inequality coefficient described by Williamson 

[1994] to ascertain the magnitude of match. The 

Spearman�s Rank Correlation Coefficient describes the 

correlation between the demand and supply variables 

by calculating the degree to which the variables fall on 

the same least square line.  Calculation of this 

coefficient will result in a value between -1 and 1.  A 

result of 1 indicates perfect positive correlation and -1 

perfect negative correlation, i.e. as one variable tends 

to increase the other will decrease at the same rate.  A 

value of zero denotes no correlation between the 

variables. The coefficient is used to describe the trend 

between the time series of two data sets and does not 

consider the relative magnitudes of the individual 

variables.  Thus, if a supply system were doubled in 

size the correlation coefficient would remain the same 

even though the excess supply would be far greater.  

Additionally, two profiles perfectly in phase with one 

another, but of very different magnitudes, would result 

in a perfect correlation, but not a perfect match. 

Nevertheless, it provides a measure of the potential 

match, which could exist given changes to the relative 

capacities, i.e. through energy efficiency, demand side 

control or altering the size of the RE system.  

The Inequality Coefficient, IC, describes the inequality 

in the magnitude domain due to three sources: unequal 



tendency (mean), unequal variation (variance) and 

imperfect co-variation (co-variance): 

 

The resultant coefficient can range in value between 0 

and 1, with 0 indicating a perfect match and 1 denoting 

no match. This metric is well suited to establishing 

bands of match, where matches resulting in inequalities 

between 0 and 0.1 could be termed good and bad 

matches are those resulting in values between 0.9 and 

1. 

 

The automated search facility is based on an exclusive 

search of all possible combinations of selected supplies 

and demands, and a search ordering process is 

conducted to identify which profile combinations are 

best (Born et al 2001).  

 

FUTURE DEVELOPMENTS 

MERIT is suitable for both macro (national, regional) 

and micro (community, institutional, individual 

building) level analysis.   An example of system use at 

the micro level is the Lighthouse Building in Glasgow 

where a number of co-operating RE technologies have 

been deployed and their performance monitored (Born 

et al 2001). This design approach focused on the 

deployment of passive renewable technologies to both 

reduce energy requirements and reshape the demand 

profile, and active renewable technologies to meet a 

significant portion of the residual demand.   The use of 

daylight together with smart lighting control resulted in 

an 81% reduction in lighting energy requirements.  

Heating requirements were reduced by 59% using 

transparently insulated façade components to achieve 

solar capture and time shift to off-set heating loads, 

together with advanced glazing to reduce heat loss and 

smart heating control. The active RE systems were then 

able to meet approximately 68% of the building�s total 

energy demand. 

On the macro level, MERIT is currently being used 

within the EC RESPIRE project aiming to establish 

mechanisms to progress towards 100% RE supply for 

remote and island communities. The methodology 

developed for achieving this will undergo robustness 

testing in five European island case studies where high 

RE penetration are being established. MERIT is being 

used to identify demand side measures, which can be 

implemented to reduce energy consumption and alter 

the demand profile to one more favourable to 

renewable technologies, for a case study on the Island 

of Islay situated off the south-west coast of Scotland. It 

is hoped that such an approach can increase the 

competitiveness and energy self-sufficiency of remote 

communities.  

CONCLUSIONS 
This paper has described the MERIT system developed 

to assist with the quantification of the match between 

RE supplies and demand, a critical issue in the 

assessment of intermittent sources of supply.  

Specifically, PV, wind turbine and battery models were 

described and a procedure for estimating the degree of 

match elaborated. MERIT can be applied at a variety of 

scales and has been designed to minimise the 

requirement for prior knowledge of the RE systems of 

interest.   
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