
 

Hancock, N.J., Shepstone, L.,  Rowe, P., Myint, P., Pomeroy, V, 

Towards Upright Pedalling to drive recovery in people who cannot walk in the 

first weeks after stroke: movement patterns and measurement. 

 

Introduction 

Repetitive practice of goal-directed, skilled functional tasks enhances the 

brain changes that underly recovery of motor function after stroke (e.g. Askim 

et al. 2009; Perez et al.2004).  But, people who cannot walk, and hence 

cannot practice walking, cannot benefit.   Indeed, these people are unlikely to 

have good recovery of walking function in response to the current package of 

rehabilitation interventions (Kwakkel & Kollen, 2013).  Better methods of 

walking rehabilitation are in the top-ten research priorities set by stroke 

survivors (Pollock et al. 2012).  

 

Body-weight support treadmill training (BWSTT) has been proposed as a tool 

to meet this challenge but provides no benefit over over-ground walking 

training (Dobkin & Duncan, 2012). Robotic systems and exoskeletons have 

emerged as possible interventions for walking practice after stroke but 

research findings are preliminary and it is recommended that 

electromechanical gait training should be used only in the context of research 

studies (NICE, 2013). Such devices are also expensive and potentially 

challenging to deploy in rehabilitation settings that include people’s homes.  

 

A potential way forward is to provide static reciprocal upright pedalling 

exercise (Hancock et al. 2012). Pedalling is a repetitive, functional activity with 

muscles organised into phasic groups (Raasch & Zajac, 1999).  Such muscle 



 

synergies have been demonstrated to be similar between walking and 

pedalling in a small sample of healthy adults during ergometer pedalling 

(Barroso et al. 2014). For stroke survivors the majority of published 

developmental studies employed recumbent-type pedalling equipment (e.g. 

Fujiwara et al. 2003; Katz-Leurer et al., 2003, Katz-Leurer et al. 2006).  Whilst 

this equipment may be easier for stroke survivors to use, it does not provide 

the upright posture for lower limb activity congruent with walking practice.  

Some support for UP is provided by the finding that  participation in a modified 

vertical pedalling task produced an increase in quadriceps activity and 

increased net positive work output in response to verticality in people late 

after stroke (Brown et al. 1997).  Upright pedalling could, therefore, provide 

task-specific training of walking-like movement in a more functional posture 

than sitting.   

 

The focus of the study reported here was on the potential use of UP to train 

walking in those unable to actually walk early after stroke. As a first stage of 

investigation we examined:  

1) whether stroke survivors who are within 31 days of stroke onset and 

unable to walk are able to produce controlled lower limb movement 

during Upright Pedalling (UP), as measured by smoothness of 

pedalling activity;  

2) the phasic activity in antagonistic lower limb muscle groups  during  

UP.  

 

 



 

Methods 

Design and ethics: 

This observational study used data from participants for whom muscle activity 

and/or kinematic data were available (n=8) from a feasibility study (n=13) 

investigating UP early after stroke (Hancock et al. 2011). Ethical approval and 

Research Governance approval were in place.   All participants provided 

informed consent.   

Participants: 

All participants: 

 Were adult in-patients of an acute stroke unit; 

 Were between three and 30 days from stroke onset 

 Had unilateral lower limb paresis 

 Were unable to walk without assistance (scoring 0, 1 or 2 on the 

Functional Ambulatory Categories, Holden et al. 1984) 

 Were considered fit to participate as assessed by a physician-led 

medical team with resting oxygen saturations of 95% or above, resting 

heart rate of 90 bpm or less and resting systolic blood pressure of 100-

160mmHg 

 Were able to follow a one-stage command 

 Were able to participate in UP for at least one, one-minute session.  

UP equipment and instrumentation: 

To provide (a) Upright Pedalling therapy for people with substantial lower limb 

paresis early after stroke and, (b) movement-based, physiological 



 

measurements to characterise motor impairment, we designed a novel 

prototype Upright Pedalling device (U-Ped). U-Ped provides appropriate trunk 

and lower limb support for people with poor postural control and is 

instrumented to enable neural-biomechanical measurement of pedalling 

(Hancock et al. 2011). Postural support for the trunk and pelvis and variable 

seat height enables the upright posture required (figure 1). Upright here refers 

to the participant’s trunk being aligned with the seat tube and the angle 

between the seat tube and horizontal approximately 90 degrees (Chen et al. 

2001). 

The U-Ped wheel was divided into eight 45 degree position bins with reflective 

markers.  During pedalling a LED sensor, placed at a fixed point on the bike 

frame, was triggered as each of the markers passed. This caused a spike in 

the software, recorded synchronously with surface electromyography (sEMG) 

data (DataLink system, Biometrics, UK).  Thus muscle activity was mapped to 

the position of the pedal during the 360 degree turn. The crank angle was 

recorded between the right crank and the seat tube where 0 degrees 

represents top dead centre (TDC) and 180 degrees represents bottom dead 

centre (BDC) (figure 2). 

Procedure: 

Motor behaviour measures were made (details below).  Participants were then 

assisted into an upright position on the U-Ped and the trunk support and 

straps adjusted as required for each individual. Following skin preparation, 

surface EMG electrodes were positioned over right and left quadriceps and 

hamstrings muscle groups, using current guidelines (SENIAM, 2013) with a 

slight variation for hamstring electrode placement due to participant inability to 



 

lie prone or stand independently. A single researcher placed the electrodes 

for each participant. 

Resting muscle data was then recorded at a voltage of 1000Hz with the foot 

supported on a box and the limb in 15 degrees of flexion for 30 seconds (see 

‘data processing’ below). Participants were then asked to pedal and when 

they reached their comfortable cadence data were recorded for one minute.  

During pedalling, EMG data were recorded continuously using the DataLink 

system (Biometrics UK; high and low pass filters, 15 to 450Hz).   

Data Processing: 

Muscle activity data were processed using custom-written scripts in Microsoft 

Excel 2007. Raw signal was rectified and to reduce signal variability and 

present an accurate mean trend of signal development, a moving average of 

50ms was used to create linear envelopes. These values represented the 

area under the curve for the selected epoch of 50ms.  

Establishing muscle activity bursts: 

Baseline muscle activity was recorded from each muscle in supported upright 

sitting on the bike with the feet resting on blocks, knee resting at 

approximately 15 degrees of flexion. This procedure was designed so that any 

additional activity above this baseline would reflect that used to pedal the 

crank in the same upright posture.  

Onset and offset of muscle activity was determined using a threshold of three 

standard deviations (3SD) above a participant’s mean resting activity (e.g. 

Brown et al. 1996; Neptune et al. 1997). Baseline (threshold) EMG values 



 

were then calculated from the processed signal as the mean ± 3 SD during 

the 30 seconds resting data collection period. Where activity was above this 

threshold value, the muscle was considered “on” and where below this 

threshold value, the muscle was considered “off”.  

Each data set was then manually checked to determine any need for 

additional filters. Raw output was visualised in the SPIKE 2 5.13 (Cambridge 

Instruments, Cambridge UK) package and the pattern compared with the 

expected “on/offs” in MS Excel calculated as above. Where there was any 

discrepancy between the two, power spectral analyses were carried out. 

Where these demonstrated regular harmonics from external noise, a band 

stop filter was applied in addition to the built-in filters of the DataLink system. 

This occurred in two of the data sets reported here. 

 

Bursts of activity were mapped according to both the time of onset/offset and 

the crank angle. For each 45 degree position bin, onset of activity was 

described by the exact amount of time for which the activity was above the 

threshold, expressed as a percentage of total time for the relevant position 

bin. For example, if the muscle was continually above the threshold 

throughout a whole position bin, this would be 100% on, and if not above the 

threshold at all within a position bin, it would be 100% off, with any variations 

of percentage activity in between.  This technique enabled a precise 

determination of muscle activity according to crank angle and removed the 

need to arbitrarily select a timeframe above which the muscle was considered 

active. It quantified the activity occurring during pedalling and could enable 

potential comparisons between pedalling sessions and individuals. It allowed 



 

for the production of phase diagrams to accurately depict activity (figure 3) 

and is therefore a reproducible methodology for measuring muscle activity 

during UP. 

Measurement Battery:  

Motor behavioural measures: 

 ability to produce voluntary muscle contraction in the lower limb as 

measured by the Motricity index (Demeurisse et al. 1980),  

 ability to walk as measured by the Functional Ambulatory Categories 

(FAC; Holden et al. 1984), and  

 trunk control as measured by the Trunk Control Test (Collin & Wade, 

1990). 

 

Reciprocal activation of antagonistic muscle groups during UP: 

Values were produced using Jaccard’s Coefficient (J): a cross-tabulation 

analysis of the processed data using SPSS (v18) with rectified, processed 

EMG data for each antagonistic muscle group.  The formula used was: 

𝐽 =
a

a + b + c
 

where a= muscles active together, b=quadriceps active, hamstrings inactive and c= 

hamstrings active, quadriceps inactive 

 

A J-value of 1.0 therefore indicated perfect positive correlation, and therefore 

complete co-contraction, or no reciprocal activation, of an antagonistic muscle 



 

pair.  A J-value of 0 indicates a perfect negative correlation, with no co-

contraction between the two muscles at all, and therefore complete reciprocal 

activation of antagonistic muscle groups.  

Smoothness of pedalling movement (S-Ped): 

Smoothness of pedalling movement (S-Ped) was determined from the 

standard deviation of mean time spent in each of the eight position bins for 

each turn, over ten complete turns of the wheel taken from a central portion of 

each pedalling session (figure 2).  Hence, a high standard deviation 

represented less smooth pedalling than a low standard deviation.  

 

Analysis 

Smoothness of pedalling, reciprocity of muscle activity and cadence were 

tabulated for individual participants and described alongside visual depictions 

of muscle activity using phase diagrams. 

Results 

Participant characteristics: 

Table 1 presents participant characteristics. In summary, participants were 

eleven days or less from stroke onset (Mdn 8, IQR 2.25), unable to walk (FAC 

= 0, all participants), severe to moderate lower limb paresis (MI score Mdn 

48.5, IQR 33.5), a range of trunk control (TCT score Mdn 43.5, IQR 37).  

 

 



 

Smoothness of lower limb movement (aim 1): 

Pedalling smoothness ranged from S-Ped 0.012 to S-Ped 0.164 (table 2). 

Whilst all participants demonstrated smooth pedalling activity, the lowest S-

Ped scores were achieved by participants with the lowest comfortable 

pedalling cadences; conversely, smoothest pedalling activity was achieved by 

those with higher comfortable pedalling cadences.  

Reciprocal activation of quadriceps and hamstrings (aim 2): 

Different muscle activation patterns, hence J-values, were found during UP 

(table 3), both in the affected and unaffected lower limb. This heterogeneity is 

illustrated by a selection of phase diagrams created from the percentage 

activity throughout the pedalling cycle (figure 3). Pattern variation included: 

reciprocal muscle activity in the affected leg (figure 3a, J=0.053) accompanied 

by hamstring activity throughout much of the cycle in the less affected leg, 

with quadriceps contributing to the upstroke (figure 3b, J=0.245); and, no 

activity in the affected leg (figure 4a) with pedalling entirely by reciprocal 

muscle activity in the less affected leg (figure 4b, J=0.038). 

Table 1: Participant characteristics 

 

 

Participant characteristics N=8 early stroke survivors; n=6 males; 
Mdn (IQR) 

Age, years 76.5 (18) 

Time since stroke onset, days 8 (2.25) 

Functional Ambulatory category (/5) 0 (0) 

Motricity Index (/100) 48.5 (33.5) 

Trunk Control Test (/100) 43.5 (37) 



 

Table 2: Individual participant smoothness scores and pedalling cadence 

Participant ID Smoothness Score (S-Ped) 

lower score=smoother pedalling 
Cadence (rpm) 

01 0.016 41.5 

02 0.047 39.5 

03 0.136 20.0 

04 0.012 53.2 

05 0.012 43.1 

06 0.068 37.5 

07 0.164 18.0 

08 0.065 28.1 

 

 

Table 3: Participant Reciprocity scores, expressed as J-values 

Participant ID Reciprocity Score 
affected leg (J-value 0-1*)  

Reciprocity Score 
unaffected leg (J-value 0-1*)  

01 excessive signal noise excessive signal noise 

02 excessive signal noise excessive signal noise 

03 No quadriceps activity 0.005 

04 No muscle activity Quadriceps activity only 

05 No muscle activity 0.038 

06 0.288 0.531 

07 0.468 0.608 

08 0.053 0.245 

* J-Value closer to 0= better reciprocal activity; J-value closer to 1= less reciprocal activity. 

 

 



 

Discussion 

Smooth pedalling was observed in this group of early stroke survivors, with a 

range of S-Ped scores from 0.012 to 0.164. Inter-participant differences in 

muscle activity patterns were found, in terms of phasic activity according to 

wheel position and reciprocity between muscle groups in both the affected 

and unaffected limbs. Results for smoothness and phasic muscle activity will 

now be considered in more detail. 

Smoothness of lower limb movement during UP 

Smoothness varied across participants; notably, the least controlled 

movement was observed at lowest pedalling speeds (S-Ped 0.164 at 18rpm; 

S-Ped 0.136 at 20rpm). Demands on stroke survivors pedalling early after 

onset are likely to be considerable as they attempt to re-establish coordinated 

movement patterns following damage to motor control systems. If able to 

achieve higher pedalling speeds, motor units are required that can rapidly 

activate and deactivate to meet the increasing frequency of the task (Ansley & 

Cangley, 2009) but at slower speeds it is possible that agonist/antagonist co-

contraction, with its associated negative work, contributes to less smooth 

movement.  

In the three participants for whom reciprocity was calculable for both legs, 

increased co-contraction was evident in the unaffected limb. It is possible here 

that the affected limb might be increasing negative work done throughout the 

cycle which in turn puts increased work on the unaffected limb of stroke 

survivors (Kautz and Brown, 1998). Further data are now required to explore 



 

a larger sample of participants and develop an understanding of what specific 

mechanisms UP might target.  

Phasic muscle activity during UP 

That we found inter-participant differences in muscle activity patterns during 

UP was unsurprising, as stroke does not have uniform effects on neural 

networks, and adaptive post-injury plasticity occurs in diverse regions both 

local to and remote from the primary site (Nudo, 2006). Indeed, inter-

participant variability of muscle activity patterns during pedalling has been 

demonstrated in later-stage stroke survivors, using adapted ergometer 

pedalling in upright postures (Kautz & Brown, 1998).  In contrast, these 

authors observed consistent patterns of activity in healthy older adults (Kautz 

&Brown, 1998; Brown &Kautz, 1998). Further work is needed to evaluate if 

patterning might continue or be disestablished with repeat UP sessions, and 

what the implication of that patterning might be to functional rehabilitation 

outcomes. For example, it might not be reasonable to assume homogeneity of 

activity this early after the onset of stroke; stroke survivors might need to 

adopt a variety of strategies to achieve functional movement that can then be 

refined with on-going therapy support. 

It is of note that smooth pedalling activity despite no measurable activity 

above baseline in either muscle group in the affected leg was observed in one 

participant (figures 3c & 3d).This indicates pedalling by the unaffected limb 

alone and only passive movement of the affected limb due to the coupled 

crank, and highlights the importance of analysing activity in both limbs early 

after stroke. This use of the unaffected lower limb alone in pedalling activity 



 

early after stroke might not be deleterious- it has been suggested that up-

regulation of ipsilateral excitatory pathways might assist the hemiplegic leg as 

the unaffected leg pedals (Kautz et al.2006).  The functional implication here 

is that even single limb pedalling, as seen in one participant in the current 

study, might make beneficial contributions to bilateral motor patterns post-

stroke. 

Limitations of the study 

Excessive signal noise was experienced for two data recording sessions in 

the hospital setting for this study, meaning that we were unable to calculate 

reciprocity scores in these cases. The reported sample was small (n=8), 

though stringent selection criteria ensured parity of some characteristics 

across participants.  

Strengths of the study 

The study recruited participants early after stroke, in the period in which the 

brain is most responsive to behavioural input. Meeting the challenge of 

recruiting people early after stroke is essential to the development of new 

rehabilitation interventions that can be initiated in the important first weeks after 

onset (Stinear, et al. 2013). It was carried out in a University Hospital Stroke 

Unit, hence a “real world” setting for people early after stroke. For this 

developmental investigation, and to inform comparisons with future studies of 

the intervention, well-defined, replicable procedures for the use of sEMG during 

UP, were designed and reported here.  



 

Exploratory work such as this is considered an important foundation for the 

development of complex rehabilitation interventions and their translation to 

clinical use (Craig et al. 2008). 

 

Conclusion 

This is, to the best of our knowledge, the first examination of elements of the 

neurophysiology of upright pedalling in people during the first few weeks after 

stroke. These observational data indicate that people with substantial paresis 

early after stroke and who cannot walk, even with the hands-on assistance of 

therapists, can produce smooth movement during UP using a variety of 

muscle activation strategies.  This work has provided a platform for future 

iterative studies of UP. The next stage in this investigation is to begin to test 

the hypothesis that UP can drive walking recovery in people with substantial 

paresis early after stroke. 

 

 

 

 

 

 

 

 

 

 



 

References 

Ansley, L.  & Cangley, P. Determinants of “optimal” cadence during cycling. 
European Journal of Sports Science 2009; 9(2): 61-85 

Askim, T., Indredavik, B., Vangberg, T. & Haberg, A. Motor network changes 
associated with successful motor skill relearning after acute ischemic stroke: A 
longitudinal functional magnetic resonance imaging study. Neurorehabilitation and 
Neural Repair 2009; 23(3): 295-304 

Barroso, F.O., Torricelli, D.,  Moreno, J.C., Taylor, J., Gomez-Soriano, J., Bravo-
Esteban, E., Piazza, S.,  Santos, C. &Pons, J.L. Shared muscle synergies in human 
walking and cycling. Journal of Neurophysiology 2014; 112(8): 1984-1988. 
 

Brown, D., Kautz, S.A. & Dairaghi, C.A. Muscle activity patterns altered during 
pedaling at different body orientations. Journal of Biomechanics 1996; 29(10): 1349-
1356 

Brown, D. A., Kautz, S.A., & Dairaghi, C.A.Muscle activity adapts to anti-gravity 
posture during pedalling in persons with post-stroke hemiplegia. Brain 1997; 120(5): 
825-837. 

Brown, D. A. & Kautz, S.A. Increased workload enhances force output during 
pedalling exercise in persons with post-stroke hemiplegia. Stroke 1998; 29: 598-606 

Chen, H.-Y., Chen, S.-C., Chen, J-J.J., Fu, L-L., & Wang, Y.L. Kinesiological and 
Kinematical Analysis for Stroke Subjects with asymmetrical Cycling Movement 
Patterns. Journal of Electromyography and Kinesiology 2005; 15: 587-595. 

Collin, C. & Wade, D. Assessing motor impairment after stroke: A pilot reliability 
study. Journal of Neurology, Neurosurgery and Psychiatry 1990; 53: 576-579 

Craig, P., Dieppe, P., Macintyre, S., Mitchie, S., Nazareth, I. & Petticrew. M. 
Developing and evaluating complex interventions: the new Medical Research Council 
guidance. BMJ 2008; 337: a1655 

Demeurisse, G., Demol, O. & Robaye, E. Motor evaluation in vascular hemiplegia.  
European Neurology 1980; 19: 382-389 

Dobkin, B.H.  & Duncan, P.W. Should body weight-supported treadmill training and 
robotic-assistive steppers for locomotor training trot back to the starting gate? 
Neurorehabilitation and Neural Repair 2012; 26: 308-317 

Fujiwara, T., Liu, M. & Chino, N. Effect of pedalling exercise on the hemiplegic lower 
limb. American Journal of Physical Medicine & Rehabilitation 2003; 82: 357-363 

Hancock, N.J., Shepstone, L., Rowe, P., Myint, P.K. & Pomeroy, V. Clinical efficacy 
and prognostic indicators for lower limb pedalling exercise early after stroke: An early 
phase randomised controlled trial. Trials 2011; 12: 68 
http:www.trialsjournal.com/content/12/1/68 

 
Hancock, N.J., Shepstone, L., Winterbotham, W. & Pomeroy, V. Effects of reciprocal 
pedalling exercise on motor function after stroke: A systematic review of randomized 
and non-randomized studies. International Journal of Stroke 2012; 7: 47-60 



 

Holden, M.K., Gill, K.M., Magliozzi, M.R., Nathan, J. & Piehl-Baker, L.  Clinical gait 
assessment in the neurologically impaired: reliability and meaningfulness. Physical 
Therapy 1984; 64: 35-40 

Katz-Leurer, M., Carmeli, E. & Shochina, M. The effect of early aerobic training on 
independence six months post stroke. Clinical Rehabilitation 2003; 17: 735-741 

Katz-Leurer, M., Sender, I., Keren, O. & Dvir, Z. The influence of early cycling 
training on balance in stroke patients at the sub-acute stage: results of a preliminary 
trial. Clinical Rehabilitation 2006; 20: 398-405  

Kautz, S. A. & Brown, D. A. Relationships between timing of muscle excitation and 
impaired motor performance during cyclical lower extremity movement in post-stroke 
hemiplegia. Brain 1998; 121: 515-526. 

Kautz, S. A., Patten, C. & Neptune R.R. Does Unilateral Pedaling Activate a 
Rhythmic Locomotor Pattern in the Nonpedaling leg in Post-Stroke 
Hemiparesis?Journal Neurophysiology2006; 95: 3154-3163. 

Kwakkel, G.& Kollen, B.J. Predicting activities after stroke: what is clinically relevant? 

International Journal of Stroke 2013; 8(1): 25-32 

National Institute of Health & Care Excellence. Stroke Rehabilitation in Adults, NICE 

guideline cg162; 2013. Available at: www.nice.org.uk/guidance/cg162 

Neptune, R.R., Kautz, S.A. & Hull, M.L. The effect of pedaling rate on coordination in 
cycling. Journal of Biomechanics 1997; 30(10): 1051-1058 

Nudo, R.J. Plasticity. The Journal of the American Society of Experimental 
NeuroTherapeutics 2006; 3(4): 420-427 

Perez, M.A., Lungholt, B.K.S., Nyborg, K. & Nielsen, J.B. Motor skill training induces 
changes in the excitability of the leg cortical area in healthy humans. Experimental 
Brain Research 2004; 159: 197-205 

Pollock, A., St George, B., Fenton, M. & Firkins, L. Top ten research priorities relating 
to life after stroke. The Lancet 2012; 11; 209 

Raasch, C.C. &Zajac, F.E. Locomotor strategy for pedalling: Muscle groups and 
biomechanical functions. Journal of Neurophysiology 1999; 82: 515-525  

SENIAM: surface electromyography for the non-invasive assessment of muscles. 
2013; guidelines available at http://www.seniam.org 

Stinear, C., Ackerley, S. & Byblow, W. Rehabilitation is initiated early after stroke- but 
most most motor rehabilitation trials are not. A systematic review. Stroke 2013; 44: 
2039-2045 

http://www.seniam.org/


 

Figures 

 

 

 

 

 

 

 

   Figure 1: U-Ped, demonstrating Upright Pedalling posture 

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic representation of wheel bins and crank angle sensor system.                                                                 
TDC= top dead centre, BDC= bottom dead centre 
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Figure 3: Phase diagrams demonstrating patterns of activity according to wheel position bin. 
Outer ring=hamstrings, inner ring=quadriceps. Grayscale used to indicate percentage activity, 
darker shading indicates more activity, lighter shading indicates less activity  

 

 

 

 

 

90°
225 ̊

TDC 
0/360°

BDC 180°

90°225°

TDC 
0/360°

BDC 180°

90°225°

TDC 
0/360°

BDC 180°

90°225°

TDC 
0/360°

BDC 180°

a. Participant 8; affected leg, demonstrating 
reciprocal muscle activity throughout cycle, 
J=0.053, accompanying moderately smooth 
pedalling (S-Ped=0.065) 

 

b. Participant 8; unaffected leg, activity less 
reciprocal than in affected leg with hamstrings 
activity throughout the cycle and quadriceps 
contributing to the upstroke, J=0.245 

 

 

c. Participant 5; affected leg demonstrating no 
activity in quadriceps or hamstrings above 
resting, but smooth pedalling activity 
demonstrated (S-Ped 0.012) due to contribution 
from the unaffected leg (see d.) 

 

 

d. Participant 5; unaffected leg, demonstrating 
reciprocal muscle activity, J= 0.038, where the 
affected leg demonstrated no activity (see figure 
c.) 

 


