
This version is available at https://strathprints.strath.ac.uk/59347/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Partial Discharge Detection and Location for HVDC Cables

Euan A Morris –1, Dr WH Siew –2, Dr Martin Given –2

1—Centre for Doctoral Training in Future Power Networks and Smart Grids
2—Institute for Energy and Environment,
Department of Electronic & Electrical Engineering, University of Strathclyde
euan.a.morris@ieee.org

Research Motivation

Partial discharge testing is becoming increasingly integral to the condition monitoring of electricity transmission assets. However the increasing use of high voltage DC links, particularly for national/international interconnectors, and for connections to off-shore wind farms, presents problems for this approach. There is significantly less experience regarding the behaviour of partial discharge under DC conditions. This project aims to address particular knowledge gaps in:

- The interpretation of HVDC PD data.
- The effect of cable insulation material on PD inception.
- Methods of determining the location of PD along a cable.

AC vs DC Partial Discharge

AC

- Well understood phenomenon with industrial experience.
- Used as part of condition monitoring schemes.
- Repeated discharge leads to insulation breakdown.
- Pulse magnitude significantly greater than background noise. Repletion rate connected to electrical frequency.
- Temperature has little effect on PD activity.
- PD repetition due to cycle in electrical charge direction.

DC

- Poorly understood connection between PD data and specific insulation faults.
- Use in condition monitoring schemes yet to be proven.
- Repeated discharge symptom of insulation imperfections rather than cause.
- Background noise and disturbance more significant due to smaller pulse magnitude and lower repetition rate.
- High temperature leads to greater PD repetition rate.
- Repetition due to finite resistivity of insulation. Greater repetition rate at cable energisation/de-energisation, and polarity change.

- Measurands are pulse magnitude and phase.

Test Cell

![Test Cell Diagram]

Experimental Plan

- Voids in polymer cable insulation under investigation
- Artificial voids created from layer polymer films
- Different types of insulation under investigation:
 - Low Density Polyethylene (LDPE)
 - Cross-Linked Polyethylene (XLPE)
 - Polypropylene Laminate (PPL)
- Aim to determine:
 - Validity of test set-up
 - PD inception voltage for each polymer
 - PD activity under AC voltage
 - PD activity under DC voltage
- To understand the effect of polymer type on DC PD activity
- Allow for better interpretation of HVDC PD data
- Analysis will be performed via:
 - Comparison with other experimental data
 - Chemical analysis of degradation
 - Physical analysis of damage
- COMSOL Multiphysics simulations will be completed of:
 - Electric field stresses
 - PD inception voltages

References