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Abstract Consider non-linear time-fractional stochastic heat type equations of the following
type,

∂
β
t ut (x) = −ν(−�)α/2ut (x) + I 1−β

t [λσ(u)
·
F (t, x)]

in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2]. The operator ∂
β
t is the Caputo

fractional derivative while −(−�)α/2 is the generator of an isotropic stable process and

I 1−β
t is the Riesz fractional integral operator. The forcing noise denoted by

·
F (t, x) is a

Gaussian noise. And the multiplicative non-linearity σ : R → R is assumed to be globally
Lipschitz continuous. Mijena and Nane (Stochastic Process Appl 125(9):3301–3326, 2015)
have introduced these time fractional SPDEs. These types of time fractional stochastic heat
type equations can be used to model phenomenon with random effects with thermal memory.
Under suitable conditions on the initial function, we study the asymptotic behaviour of the
solution with respect to time and the parameter λ. In particular, our results are significant
extensions of those inAnn Probab (to appear), Foondun andKhoshnevisan (Electron J Probab
14(21): 548–568, 2009), Mijena and Nane (2015) and Mijena and Nane (Potential Anal
44:295–312, 2016). Along the way, we prove a number of interesting properties about the
deterministic counterpart of the equation.

Keywords Space-time-fractional stochastic partial differential equations · Fractional
Duhamel’s principle · Caputo derivatives · Noise excitability

B Mohammud Foondun
M.I.Foondun@lboro.ac.uk; mohammud.foondun@strath.ac.uk

1 University of Strathclyde, Glasgow, UK

2 Auburn University, Auburn, AL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-016-1834-3&domain=pdf


M. Foondun, E. Nane

1 Introduction and main results

1.1 Background material

Recently, there has been an increased interest in fractional calculus. This is because, time
fractional operators are proving to be very useful for modelling purposes. For example,
while the classical heat equation ∂t ut (x) = �ut (x), used for modelling heat diffusion in
homogeneous media, the fractional heat equation ∂

β
t ut (x) = �ut (x) are used to describe

heat propagation in inhomogeneous media. It is known that as opposed to the classical
heat equation, this equation is known to exhibit sub diffusive behaviour and are related
with anomalous diffusions or diffusions in non-homogeneous media, with random fractal
structures; see, for instance, [17]. The main aim of this paper is study a class of stochastic
fractional heat equations. In particular, it will become clear how this sub diffusive feature
affects other properties of the solution.

Stochastic partial differential equations (SPDE) have been studied in mathematics, and
in many disciplines that include statistical mechanics, theoretical physics, theoretical neuro-
science, theory of complex chemical reactions, fluid dynamics, hydrology, and mathematical
finance; see, for example, Khoshnevisan [14] for an extensive list of references. The area of
SPDEs is interesting to mathematicians as it contains a lot of hard open problems. So far
most of the work done on the stochastic heat equations have dealt with the usual time deriva-
tive, that is β = 1. Its only recently that Mijena and Nane has introduced time fractional
SPDEs in [18]. These types of time fractional stochastic heat type equations are attractive
models that can be used to model phenomenon with random effects with thermal memory.
In another paper [19] they have proved exponential growth of solutions of time fractional
SPDEs–intermittency–under the assumption that the initial function is bounded from below.
A related class of time-fractional SPDE was studied by Karczewska [13], Chen et al. [5], and
Baeumer et al [1]. They have proved regularity of the solutions to the time-fractional parabolic
type SPDEs using cylindrical Brownain motion in Banach spaces in the sense of [6]. For a
comparison of the two approaches to SPDE’s see the paper by Dalang and Quer-Sardanyons
[7].

A Physical explanation of time fractional SPDEs is given in [5]. The time-fractional
SPDEs studied in this paper may arise naturally by considering the heat equation in amaterial
with thermal memory.

Before we describe our equations with more care, we provide some heuristics. Consider
the following fractional equation,

∂
β
t ut (x) = −ν(−�)α/2ut (x)

with β ∈ (0, 1) and ∂
β
t is the Caputo fractional derivative which first appeared in [3] and is

defined by

∂
β
t ut (x) = 1

	(1 − β)

∫ t

0
∂r ur (x)

dr

(t − r)β
. (1.1)

If u0(x) denotes the initial condition to the above equation, then the solution can be written
as

ut (x) =
∫
Rd

Gt (x − y)u0(y)dy.
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Gt (x) is the time-fractional heat kernel, which we will analyse a bit more later. Let us now
look at

∂
β
t ut (x) = −ν(−�)α/2ut (x) + f (t, x), (1.2)

with the same initial condition u0(x) and f (t, x) is some nice function. We will make use of
time fractional Duhamel’s principle [20–22] to get the correct version of (1.3). Using the
fractional Duhamel principle, the solution to (1.2) is given by

ut (x) =
∫
Rd

Gt (x − y)u0(y)dy +
∫ t

0

∫
Rd

Gt−r (x − y)∂1−β
r f (r, y)dydr.

Wewill remove the fractional derivative appearing in the second term of the above display.
Define the Riesz fractional integral operator by

I γ
t f (t) := 1

	(γ )

∫ t

0
(t − τ)γ−1 f (τ )dτ.

For every β ∈ (0, 1), and g ∈ L∞(R+) or g ∈ C(R+)

∂
β
t I

β
t g(t) = g(t).

We consider the time fractional PDE with a force given by f (t, x) = I 1−β
t g(t, x), then by

the Duhamel’s principle, the mild solution to (1.2) will be given by

ut (x) =
∫
Rd

Gt (x − y)u0(y)dy +
∫ t

0

∫
Rd

Gt−r (x − y)g(r, y)dydr.

The reader can consult [5] for more information. The first equation wewill study in this paper
is the following.

∂
β
t ut (x) = −ν(−�)α/2ut (x) + I 1−β

t [λσ(ut (x))
·
W (t, x)], x ∈ R

d , (1.3)

where the initial datum u0 is a non-random measurable function.
·
W (t, x) is a space-time

white noise with x ∈ R
d and σ : R → R is a globally Lipschitz function. λ is a positive

parameter called the “level of noise”. We will make sense of the above equation using an
idea in Walsh [23]. In light of the above discussion, a solution ut to the above equation will
in fact be a solution to the following integral equation.

ut (x) = (Gu0)t (x) + λ

∫ t

0

∫
Rd

Gt−s(x − y)σ (us(y))W (dy ds), (1.4)

where

(Gu0)t (x) :=
∫
Rd

Gt (x − y)u0(y)dy.

We now fix the parameters α and β. Wewill restrict β ∈ (0, 1). The dimension d is related
with α and β via

d < (2 ∧ β−1)α.

Note that when β = 1, the equation reduces to the well known stochastic heat equation
and the above restrict the problem to a one-dimensional one. This is the so called curse
of dimensionality explored in [9]. We will require the following notion of “random-field”
solution. We will need d < 2α while computing the L2−norm of the heat kernel, while d <

123



M. Foondun, E. Nane

β−1α is needed for an integrability condition needed for ensuring existence and uniqueness
of the solution.

Definition 1.1 A random field {ut (x), t ≥ 0, x ∈ R
d} is called a mild solution of (1.3) if

1. ut (x) is jointly measurable in t ≥ 0 and x ∈ R
d ;

2. ∀(t, x) ∈ [0,∞)×R
d ,

∫ t
0

∫
Rd Gt−s(x − y)σ (us(y))W (dy ds) is well-defined in L2(�);

by the Walsh-Dalang isometry this is the same as requiring

sup
x∈Rd

sup
t>0

E|ut (x)|2 < ∞.

3. The following holds in L2(�),

ut (x) = (Gu0)t (x) + λ

∫ t

0

∫
Rd

Gt−s(x − y)σ (us(y))W (dy ds).

Next, we introduce the second class equation with space colored noise.

∂
β
t ut (x) = −ν(−�)α/2ut (x) + I 1−β

t [λσ(ut (x))Ḟ(t, x)], x ∈ R
d . (1.5)

The only difference with (1.3) is that the noise term is now colored in space. All the other
conditions are the same. We now briefly describe the noise.

Ḟ denotes the Gaussian colored noise satisfying the following property,

E[Ḟ(t, x)Ḟ(s, y)] = δ0(t − s) f (x, y).

This can be interpreted more formally as

Cov

(∫
φdF,

∫
ψdF

)
=

∫ ∞

0
ds

∫
Rd

dx
∫
Rd

dyφs(x)ψs(y) f (x − y), (1.6)

where we use the notation
∫

φdF to denote the wiener integral of φ with respect to F , and
the right-most integral converges absolutely.

We will assume that the spatial correlation of the noise term is given by the following
function for γ < d ,

f (x, y) := 1

|x − y|γ .

Following Walsh [23], we define the mild solution of (1.5) as the predictable solution to
the following integral equation

ut (x) = (Gu0)t (x) + λ

∫
Rd

∫ t

0
Gt−s(x − y)σ (us(y))F(dsdy). (1.7)

As before, we will look at random field solution, which is defined by (1.7). We will also
assume the following

γ < α ∧ d.

That we should have γ < d follows from an integrability condition about the correlation
function. We need γ < α which comes from an integrability condition needed for the
existence and uniqueness of the solution.

We now briefly give an outline of the paper. We state main results in the next subsection.
We give some preliminary results in Sect. 2, we prove a number of interesting properties of
the heat kernel of the time fractional heat type partial differential equations that are essential
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to the proof of our main results. The proofs of the results in the space-time white noise are
given in Sect. 3. In Sect. 4, we prove the main results about the space colored noise equation,
and the continuity of the solution to the time fractional SPDEs with space colored noise.
Throughout the paper, we use the letterC or c with or without subscripts to denote a constant
whose value is not important and may vary from places to places. If x ∈ R

d , then |x | will
denote the euclidean norm of x ∈ R

d , while when A ⊂ R
d , |A| will denote the Lebesgue

measure of A.

1.2 Statement of main results

Before stating our main results precisely, we describe some of the conditions we need. The
first condition is required for the existence-uniquess result as well as the upper bound on the
second moment of the solution.

Assumption 1.2 • Weassume that initial condition is a non-randombounded non-negative
function u0 : R

d → R.
• We assume that σ : R → R is a globally Lipschitz function satisfying σ(x) ≤ Lσ |x |

with Lσ being a positive number.

The following condition is needed for lower bound on the second moment.

Assumption 1.3 • We will assume that the initial function u0 is non-negative on a set of
positive measure.

• The function σ satisfies σ(x) ≥ lσ |x | with lσ being a positive number.

Mijena and Nane [18, Theorem 2] have essentially proved the next theorem. We give a
new proof of this theorem in this paper.

Theorem 1.4 Suppose that d < (2 ∧ β−1)α. Then under Assumption 1.2, there exists a
unique random-field solution to (1.3) satisfying

sup
x∈Rd

E|ut (x)|2 ≤ c1e
c2λ

2α
α−dβ t for all t > 0.

Here c1 and c2 are positive constants.

Remark 1.5 This theorem says that second moment grows at most exponentially. While this
has been known [18], the novelty here is that we give a precise rate with respect to the
parameter λ. Theorem 1.4 implies that a random field solution exists when d < (2∧ β−1)α.
It follows from this theorem that TFSPDEs in the case of space-time white noise is that a
random field solution exists in space dimension greater than 1 in some cases, in contrast to
the parabolic stochastic heat type equations, the case β = 1. So in the case α = 2, β < 1/2,
a random field solution exists when d = 1, 2, 3. When β = 1 a random field solution exists
only in spatial dimension d = 1.

The next theorem shows that under some additional condition, the second moment will
have exponential growth. This greatly extends results of [4,8,10], and [11].

Theorem 1.6 Suppose that the conditions of Theorem 1.4 are in force. Then under Assump-
tion 1.3, there exists a T > 0, such that

inf
x∈B(0, tβ/α)

E|ut (x)|2 ≥ c3e
c4λ

2α
α−dβ t for all t > T .

Here c3 and c4 are positive constants.
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The lower bound in the previous theorem is completely new.Most of the results of these kinds
have been derived from the renewal theoretic ideas developed in [10] and [11]. The methods
used in this article are completely different. In particular, we make use of a localisation
argument together with heat kernel estimates for the time fractional diffusion equation.

Remark 1.7 The two theorems above imply that, under some conditions, there exist some
positive constants a5 and a6 such that,

a5λ
2α/(α−βd) ≤ lim inf

t→∞
1

t
logE|ut (x)|2 ≤ lim sup

t→∞
1

t
logE|ut (x)|2 ≤ a6λ

2α/(α−βd),

for any fixed x ∈ R
d .

The exponential growth of the second moment of the solution have been proved under the
assumption that the initial function is bounded from below in [19]. This exponential growth
property have been proved by [10] when β = 1 and d = 1 when the initial function is also
bounded from below. When β = 1, and the initial function satisfies the assumption 1.3, this
was established by [8]. Chen [4] has established intermittency of the solution of (1.3) when
d = 1, α = 2, and β ∈ (0, 1) and β ∈ (1, 2) with measure-valued initial data.

We will need the following definition which we borrow from [15]. Set

Et (λ) :=
√∫

Rd
E|ut (x)|2 dx .

and define the nonlinear excitation index by

e(t) := lim
λ→∞

log log Et (λ)

log λ
.

The next theorem gives the rate of growth of the second moment with respect to the
parameter λ, which extends results in [8]. We note that for time t large enough, this follows
from the theorem above. But for small t , we need to work a bit harder.

Theorem 1.8 Fix t > 0 and x ∈ R
d , we then have

lim
λ→∞

log logE|ut (x)|2
log λ

= 2α

α − dβ
.

Moreover, if the energy of the solution exists, then the excitation index, e(t) is also equal to
2α

α−dβ .

Note that for the energy of the solution to exists, we need some assumption on the initial
condition. One can always impose boundedness with compact support.

The following theorem is essentially Theorem 2 in [18]. We only state it to compare the
Hölder exponent with the excitation index. This shows that the relationship mentioned in
[8] holds for this equation as well: η ≤ 1/e(t). Hence showcasing a link between noise
excitability and continuity of the solution.

Theorem 1.9 [18] Let η < (α −βd)/2α then for every x ∈ R
d , {ut (x), t > 0}, the solution

to (1.3) has Hölder continuous trajectories with exponent η.

All the above results were about the white noise driven equation. Our first result on space
colored noise case reads as follows.
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Theorem 1.10 Under the Assumption 1.2, there exists a unique random field solution ut of
(1.5) whose second moment satisfies

sup
x∈Rd

E|ut (x)|2 ≤ c5 exp(c6λ
2α/(α−γβ)t) for all t > 0.

Here the constants c5, c6 are positive numbers. If we impose the further requirement that
Assumption 1.3 holds, then there exists a T > 0 such that

inf
x∈B(0, tβ/α)

E|ut (x)|2 ≥ c7 exp(c8λ
2α/(α−γβ)t) for all t > T,

where T and the constants c7, c8 are positive numbers.

Remark 1.11 Theorem 1.10 implies that there exist some positive constants c9 and c10 such
that

c9λ
2α/(α−βγ ) ≤ lim inf

t→∞
1

t
logE|ut (x)|2 ≤ lim sup

t→∞
1

t
logE|ut (x)|2 ≤ c10λ

2α/(α−βγ ),

for any fixed x ∈ R
d .

Theorem 1.12 Fix t > 0 and x ∈ R
d , we then have

lim
λ→∞

log logE|ut (x)|2
log λ

= 2α

α − γβ
.

Moreover, if the energy of the solution exists, then the excitation index, e(t) is also equal to
2α

α−γβ
.

We now give a relationship between the excitation index of (1.5) and its continuity prop-
erties.

Theorem 1.13 Let η < (α − βγ )/2α then for every x ∈ R
d , {ut (x), t > 0}, the solution to

(1.5) has Hölder continuous trajectories with exponent η.

Akey difference from themethods used in [8] is that, here we develop some new important
tools. For example, we need analyse the heat kernel and prove some relevant estimates. In
[8], this step was relatively straightforward. But here the lack of semigroup property makes
it that we need to work much harder. To address this, we heavily rely on subordination. This
insight, absent in [4] makes it that we are able to vastly generalise the results of that paper.
Another key tool is showing that with time, (Gu0)t (x) decays at most like the inverse of a
polynomial. This also requires techniques based on subordination. We also point out that a
significant difference from early work is that here our analysis is based on restricting the
spatial variable to a dynamic ball. This enables us to prove the exponential growth of the
second moment and the right rate with respect to λ. Finding this precise rate for stochastic
partial differential equations is quite a new problem and this current paper shows how this
rate depends on the fractional nature of the operator.

2 Preliminaries

Asmentioned in the introduction, the behaviour of the heat kernelGt (x)will play an important
role. This section will mainly be devoted to estimates involving this quantity. We start by
giving a stochastic representation of this kernel. Let Xt denote a symmetric α stable process
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with density function denoted by p(t, x). This is characterized through the Fourier transform
which is given by

p̂(t, ξ) = e−tν|ξ |α . (2.1)

Let D = {Dr , r ≥ 0} denote a β-stable subordinator and Et be its first passage time.
It is known that the density of the time changed process XEt is given by the Gt (x). By
conditioning, we have

Gt (x) =
∫ ∞

0
p(s, x) fEt (s)ds, (2.2)

where

fEt (x) = tβ−1x−1−1/βgβ

(
t x−1/β)

, (2.3)

where gβ(·) is the density function of D1 and is infinitely differentiable on the entire real
line, with gβ(u) = 0 for u ≤ 0. Moreover,

gβ(u) ∼ K (β/u)(1−β/2)/(1−β) exp
{
−|1 − β|(u/β)β/(β−1)

}
as u → 0+, (2.4)

and

gβ(u) ∼ β

	(1 − β)
u−β−1 as u → ∞. (2.5)

While the above expressionswill be very important,wewill also need theFourier transform
of Gt (x).

Gt
∗(ξ) = Eβ

(−ν|ξ |αtβ)
,

where the Mittag-Leffler function

Eβ(x) =
∞∑
k=0

xk

	(1 + βk)
(2.6)

satisfies the following inequality,

1

1 + 	(1 − β)x
≤ Eβ(−x) ≤ 1

1 + 	(1 + β)−1x
for x > 0. (2.7)

Even though, we will be mainly using the representation given by (2.2), we also have another
explicit description of the heat kernel.

Using the convention ∼ to denote the Laplace transform and ∗ the Fourier transform we
get

G̃∗
t (x) = λβ−1

λβ + ν|ξ |α . (2.8)

Inverting the Laplace transform yields

G∗
t (ξ) = Eβ

(−ν|ξ |αtβ)
. (2.9)

In order to invert the Fourier transform when d = 1, we will make use of the integral [12,
eq. 12.9]

∫ ∞

0
cos(ks)Eβ,α(−asμ)ds = π

k
H2,1
3,3

[
kμ

a

∣∣∣∣
(1,1),(α,β),(1,μ/2)

(1,μ),(1,1),(1,μ/2)

]
,
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where R(α) > 0, β > 0, k > 0, a > 0, Hm,n
p,q is the H-function given in [16, Defini-

tion 1.9.1, p. 55] and the formula

1

2π

∫ ∞

−∞
e−iξ x f (ξ)dξ = 1

π

∫ ∞

0
f (ξ) cos(ξ x)dξ.

Then this gives the function as

Gt (x) = 1

|x |H
2,1
3,3

[ |x |α
νtβ

∣∣∣∣
(1,1),(1,β),(1,α/2)

(1,α),(1,1),(1,α/2)

]
. (2.10)

Note that for α = 2 using reduction formula for the H-function we have

Gt (x) = 1

|x |H
1,0
1,1

[ |x |2
νtβ

∣∣∣∣
(1,β)

(1,2)

]
. (2.11)

Note that for β = 1 it reduces to the Gaussian density

Gt (x) = 1

(4νπ t)1/2
exp

(
−|x |2
4νt

)
. (2.12)

We will need following properties of the heat kernel of stable process.

•
p(t, x) = t−d/α p(1, t−1/αx).

•
p(st, x) = s−d/α p(t, s−1/αx).

• p(t, x) ≥ p(t, y)whenever |x | ≤ |y|.
• For t large enough so that p(t, 0) ≤ 1 and τ ≥ 2, we have

p

(
t,

1

τ
(x − y)

)
≥ p(t, x)p(t, y).

All these properties, except the last one, are straightforward. They follow from scaling. We
therefore provide a quick proof of the last inequality. Suppose that t is large enough so that
p(t, 0) ≤ 1. Now,we have that |x−y|

τ
≤ 2|x |

τ
∨ 2|y|

τ
≤ |x |∨|y|.Therefore by themonotonicity

property of the heat kernel and the fact that time is large enough, we have

p

(
t,

1

τ
(x − y)

)
≥ p(t, |x | ∨ |y|)
≥ p(t, |x |) ∧ p(t, |y|)
≥ p(t, |x |)p(t, |y|).

We will need the lower bound described in the following lemma. The upper bound is
given for the sake of completeness and is true under the additional assumption that α > d , a
condition which we will not need in this paper.

Lemma 2.1 (a) There exists a positive constant c1 such that for all x ∈ R
d

Gt (x) ≥ c1

(
t−βd/α ∧ tβ

|x |d+α

)
.
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(b) If we further suppose that α > d, then there exists a positive constant c2 such that for all
x ∈ R

d

Gt (x) ≤ c2

(
t−βd/α ∧ tβ

|x |d+α

)
.

Proof It is well known that the transition density p(t, x) of any strictly stable process is
given by

c1

(
t−d/α ∧ t

|x |d+α

)
≤ p(t, x) ≤ c2

(
t−d/α ∧ t

|x |d+α

)
, (2.13)

where c1 and c2 are positive constants. We have

Gt (x) =
∫ ∞

0
p(s, x) fEt (s)ds,

which after using (2.3) and an appropriate substitution gives the following

Gt (x) =
∫ ∞

0
p((t/u)β, x)gβ(u)du.

Suppose that |x | ≤ tβ/α then t/|x |α/β ≥ 1. When we have u ≤ t/|x |α/β , we can write
∫ ∞

0
p((t/u)β, x)gβ(u)du ≥ c5

∫ t/|x |α/β

0
(t/u)−βd/αgβ(u)du

≥ c6

∫ 1

0
(t/u)−βd/αgβ(u)du

= c7t
−βd/α

∫ 1

0
uβd/αgβ(u)du.

(2.14)

Since the integral appearing in the right hand side of the above display is finite, we have
Gt (x) ≥ c8t−βd/α whenever |x | ≤ tβ/α . We now look at the case |x | ≥ tβ/α .

∫ ∞

0
p((t/u)β, x)gβ(u)du ≥

∫ ∞

t/|x |α/β

c9
(t/u)β

|x |d+α
gβ(u)du

≥ c10
tβ

|x |d+α

∫ ∞

1
(u)−βgβ(u)du

≥ c11tβ

|x |d+α
,

(2.15)

where we have used the fact that
∫ ∞
1 (u)−βgβ(u)du is a positive finite constant to come up

with the last line.
We now use the fact that p((t/u)β, x) ≤ c1

uβd/α

tβd/α , we have

Gt (x) ≤ c1

∫ ∞

0

uβd/α

tβd/α
gβ(u)du

= c1
tβd/α

∫ ∞

0
uβd/αgβ(u)du.

The inequality on the right hand side is bounded only if α > d . This follows from the fact
that for large u, gβ(u) behaves like u−β−1. So we have Gt (x) ≤ c2

tβd/α . Similarly, we can use

p((t/u)β, x) ≤ c3tβ

uβ |x |d+α , to write
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Gt (x) ≤ c3

∫ ∞

0

tβ

uβ |x |d+α
gβ(u)du

= c3tβ

|x |d+α

∫ ∞

0
u−βgβ(u)du.

Since the integral appearing in the above display is finite, we have Gt (x) ≤ c4tβ

|x |d+α . We
therefore have

Gt (x) ≤ c5

(
t−dβ/α ∧ tβ

|x |d+α

)
.


�
Remark 2.2 When α ≤ d , then the function Gt (x) is not well defined everywhere. But its
representation in terms of H functions, one can show that x = 0 is the only point where it is
undefined. We won’t use the pointwise upper bound. The lower bound is trivially true when
x = 0.

The L2-norm of the heat kernel can be calculated as follows. This lemma is crucial in showing
existence of solutions to our equation (1.3).

Lemma 2.3 Suppose that d < 2α, then∫
Rd

G2
t (x)dx = C∗t−βd/α, (2.16)

where the constant C∗ is given by

C∗ = (ν)−d/α2πd/2

α	
( d
2

) 1

(2π)d

∫ ∞

0
zd/α−1(Eβ(−z))2dz.

Proof Using Plancherel theorem and (2.9), we have∫
Rd

|Gt (x)|2dx = 1

(2π)d

∫
Rd

|Ĝt (ξ)|2dξ = 1

(2π)d

∫
Rd

∣∣Eβ

(−ν|ξ |αtβ)∣∣2 dξ

= 2πd/2

	
( d
2

) 1

(2π)d

∫ ∞

0
rd−1 (

Eβ

(−νrα tβ
))2

dr. (2.17)

= (νtβ)−d/α2πd/2

α	
( d
2

) 1

(2π)d

∫ ∞

0
zd/α−1 (

Eβ(−z)
)2 dz. (2.18)

To finish the proof, we need to show that the integral on the right hand side of the above
display is bounded. We use equation (2.7) to get

∫ ∞

0

zd/α−1

(1 + 	(1 − β)z)2
dr ≤

∫ ∞

0
zd/α−1 (

Eβ(−z)
)2 dz

≤
∫ ∞

0

zd/α−1

(1 + 	(1 + β)−1z)2
dz. (2.19)

Hence
∫ ∞
0 zd/α−1

(
Eβ(−z)

)2 dz < ∞ if and only if d < 2α. 
�
Recall the Fourier transform of the heat kernel

G∗
t (ξ) = Eβ

(−ν|ξ |αtβ)
. (2.20)

We will use this to prove the following.
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Lemma 2.4 For γ < 2α, ∫
Rd

[Ĝt (ξ)]2 1

|ξ |d−γ
dξ = C∗

1 t
−βγ/α, (2.21)

where C∗
1 = (ν)−γ /α2πd/2

α	
(
d
2

) 1
(2π)d

∫ ∞
0 zγ /α−1

(
Eβ(−z)

)2 dz.
Proof We have∫

Rd
[G∗

t (ξ)]2 1

|ξ |d−γ
dξ =

∫
Rd

∣∣Eβ

(−ν|ξ |αtβ)∣∣2 1

|ξ |d−γ
dξ

= 2πd/2

	
( d
2

)
∫ ∞

0
rd−1 (

Eβ

(−νrαtβ
))2 1

rd−γ
dr.

= (νtβ)−γ /α2πd/2

α	
( d
2

) 1

(2π)d

∫ ∞

0
zγ /α−1 (

Eβ(−z)
)2 dz. (2.22)

We used the integration in polar coordinates for radially symmetric function in the last
equation above. Now using equation (2.7) we get

∫ ∞

0

zγ /α−1

(1 + 	(1 − β)z)2
dr ≤

∫ ∞

0
zγ /α−1 (

Eβ(−z)
)2 dz

≤
∫ ∞

0

zγ /α−1

(
1 + 	(1 + β)−1z

)2 dz. (2.23)

Hence
∫ ∞
0 zγ /α−1(Eβ(−z))2dz < ∞ if and only if γ < 2α. In this case the upper bound in

equation (2.23) is
∫ ∞

0

zγ /α−1

(1 + 	(1 + β)−1z)2
dz = B(γ /α, 2 − γ /α)

	(1 + β)−γ /α
,

where B(γ /α, 2 − γ /α) is a Beta function. 
�
Remark 2.5 For γ < 2α,

B(γ /α, 2 − γ /α)

	(1 − β)γ/α
≤

∫ ∞

0
zγ /α−1 (

Eβ(−z)
)2 dz ≤ B(γ /α, 2 − γ /α)

	(1 + β)−γ /α
.

We have the following estimate which will be useful for establishing temporal continuity
property of the solution of (1.5).

Proposition 2.6 Let γ < min{2, β−1}α and h ∈ (0, 1), we then have∫ t

0

∫
Rd

∣∣∣Ĝt−s+h(ξ) − Ĝt−s(ξ)

∣∣∣2 1

|ξ |d−γ
dξds ≤ c1h

1−βγ/α.

Proof The computation in Lemma 2.4 we have∫
Rd

|Ĝt−s+h(ξ) − Ĝt−s(ξ)|2 1

|ξ |d−γ
dξ

=
∫
Rd

(Ĝt−s+h(ξ))2
1

|ξ |d−γ
dξ +

∫
Rd

(Ĝt−s(ξ))2
1

|ξ |d−γ
dξ

−2
∫
Rd

Ĝt−s+h(ξ)Ĝt−s(ξ)
1

|ξ |d−γ
dξ

= C∗
1 (t − s + h)−βγ/α + C∗

1 (t − s)−βγ/α − 2
∫
Rd

Ĝt−s+h(ξ)Ĝt−s(ξ)
1

|ξ |d−γ
dξ.
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Using integration in polar coordinates inR
d , and the fact that h(z) = Eβ(−z) is decreasing

(since it is completely monotonic, i.e. (−1)nh(n)(z) ≥ 0 for all z > 0, n = 0, 1, 2, 3, . . .),
we get

2
∫
Rd

Ĝt−s+h(ξ)Ĝt−s(ξ)
1

|ξ |d−γ
dξ

= 2
∫
Rd

Eβ

(−ν|ξ |α(t − s + h)β
)
Eβ

(−ν|ξ |α(t − s)β
) 1

|ξ |d−γ
dξ

≥ 2
∫
Rd

Eβ

(−ν|ξ |α(t − s + h)β
)
Eβ

(−ν|ξ |α(t − s + h)β
) 1

|ξ |d−γ
dξ

= 2C∗
1 (t − s + h)−βγ/α.

Now integrating both sides wrt to s from 0 to t we get
∫ t

0

∫
Rd

|Ĝt−s+h(ξ) − Ĝt−s(ξ)|2 1

|ξ |d−γ
dξdr

≤ −C∗
1 (h)1−βγ/α

1 − βγ/α
+ C∗

11(t + h)1−βγ/α

1 − βγ/α
+ C∗

1 t
1−βγ/α

1 − βγ/α

+2C∗
1 (h)1−βγ/α

1 − βγ/α
− 2C∗

1 (t + h)1−βd/α

1 − βd/α

= C∗
1 (h)1−βγ/α

1 − βγ/α
− C∗

1 (t + h)1−βγ/α

1 − βγ/α
+ C∗

1 t
1−βγ/α

1 − βγ/α

≤ C∗
1 (h)1−βγ/α

1 − βγ/α
, (2.24)

the last inequality follows since t < t ′. 
�
Lemma 2.7 Suppose that γ < α, then there exists a constant c1 such that for all x, y ∈ R

d ,
we have ∫

Rd

∫
Rd

Gt (x − w)Gt (y − z) f (z, w)dwdz ≤ c1
tγβ/α

.

Proof We start by writing∫
Rd

∫
Rd

p(t, x − w)p(t ′, y − z) f (z, w)dwdz

=
∫
Rd

p(t + t ′, x − y + w)|w|−γ dw

≤ c2
(t + t ′)γ /α

.

We use subordination again to write∫
Rd

∫
Rd

Gt (x − w)Gt (y − z) f (z, w)dwdz

=
∫
Rd×Rd

∫ ∞

0

∫ ∞

0
p(s, x − w)p(s′, y − z) fEt (s) fEt (s

′)dsds′ f (z, w)dwdz

=
∫ ∞

0

∫ ∞

0

∫
Rd×Rd

p(s, x − w)p(s′, y − z) f (z, w)dwdz fEt (s) fEt (s
′)dsds′
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≤
∫ ∞

0

∫ ∞

0

c2
(s + s′)γ /α

fEt (s) fEt (s
′)dsds′

≤
∫ ∞

0

∫ ∞

0

c2
sγ /α

fEt (s) fEt (s
′)dsds′.

Recalling that fEt (s
′) is a probability density of inverse subordinator Dt , we can use a

change of variable to see that the right hand side of the above display is bounded by

c3
tγβ/α

∫ ∞

0
uγβ/αgβ(u) du.

Since the above integral is finite, the result is proved. 
�

The next result gives the behaviour of non-random term for the mild formulation for the
solution. For notational convenience, we set

(Gu)t (x) :=
∫
Rd

Gt (x − y)u0(y) dy.

The proof will strongly rely on the representation given by (2.2) and we will also need

(G̃u)t (x) :=
∫
Rd

p(t, x − y)u0(y) dy,

where p(t, x) is the heat kernel of the stable process. We will need the fact that for t large
enough, we have (G̃u)t (x) ≥ c1t−d/α for x ∈ B(0, t1/α). We will prove this fact and a bit
more in the following. The proof heavily relies on the properties of p(t, x) which we stated
earlier in this section.

Lemma 2.8 There exists a t0 > 0 large enough such that for all t > 0

(G̃u)t+t0(x) ≥ c1t
−d/α, whenever x ∈ B(0, t1/α),

where c1 is a positive constant. More generally, there exists a positive constant κ > 0 such
that for s ≤ t and t ≥ t0, we have

(G̃u)s+t0(x) ≥ c2t
−κ , whenever x ∈ B(0, t1/α).

c2 is some positive constant.

Proof Webegin with the following observation about the heat kernel. Choose t0 large enough
so that p(t0, 0) ≤ 1. We therefore have

p(t0, x − y) = p(t0, 2(x − y)/2)

≥ p(t0, 2x)p(t0, 2y)

= 1

2d
p(t0/2

α, x)p(t0, 2y).

This immediately gives

(G̃u)t0(x) =
∫
Rd

p(t, x − y)u0(y) dy

≥ c1 p(t0/2
α, x)

∫
Rd

p(t0, 2y)u0(y) dy.
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We now use the semigroup property to obtain

(G̃u)t+t0(x) =
∫
Rd

p(t + t0, x − y)u0(y) dy

=
∫
Rd

p(t, x − y)(G̃u)t0(y) dy

≥ c2 p(t + t0/2, x), (2.25)

This inequality shows that for any fixed x, (G̃u)t+t0(x) decays as t goes to infinity. It also
shows that

(G̃u)t+t0(x) ≥ c3t
−d/α, whenever |x | ≤ t1/α.

This follows from the fact that p(t + t0/2, x) ≥ c4t−d/α if |x | ≤ t1/α . The more general
statement of the lemma needs a bit more work.

(G̃u)s+t0(x) ≥ c2 p(s + t0/2, x)

≥ c3

(
t0

2s + t0

)d/α

p(t0, x)

≥ c3

(
t0

2s + t0

)d/α

p
(
t0, t

1/α)
.

Since we are interested in the case when s ≤ t and t ≥ t0, the right hand side can be bounded
as follows

(G̃u)s+t0(x) ≥ c4

(
t0

2t + t0

)d/α t0
td/α+1 .

The second inequality in the statement of the lemma follows from the above. 
�
Lemma 2.9 There exists a t0 > 0 and a constant c1 such that for all t > t0 and all
x ∈ B(0, tβ/α), we have

(Gu)s+t (x) ≥ c1
tβκ

for all s ≤ t.

Proof We start off by writing

(Gu)t (x) =
∫
Rd

Gt (x − y)u0(y) dy

=
∫
Rd

∫ ∞

0
p(s, x − y) fEt (s) ds u0(y)dy

=
∫ ∞

0
(G̃u)s(x) fEt (s) ds.

After the usual change of variable, we have

(Gu)t (x) =
∫ ∞

0
(G̃u)(t/u)β (x)gβ(u) du,

which immediately gives

(Gu)t (x) ≥
∫ 1

0
(G̃u)(t/u)β (x)gβ(u) du.
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The above holds for any time t . In particular, we have

(Gu)t+s(x) ≥
∫ 1

0
(G̃u)((t+s)/u)β (x)gβ(u) du.

We now that note that x ∈ B(0, tβ/α), so we have x ∈ B(0, tβ/α/u) and hence for t large
enough and s ≤ t , we have (G̃u)((s+t0)/u)β (x) ≥ ( u

t

)βκ by the previous lemma. Combining
the above estimates, we have the result. 
�
Remark 2.10 The above is enough for the lower bound given in Theorem 1.6 and the lower
bound described in Theorem 1.10. But we need an analogous result for the the noise excitabil-
ity result which hold for all t > 0. Fix t̃ > 0 such that p(t, 0) ≤ 1 whenever t ≥ t̃ . For any
fixed t > 0, we choose k large enough so that 2k t > t̃ . Set t∗ := 2k t and s = 2−k .

p(t, x − y) = p(st∗, x − y)

= s−d/α p(t∗, s−1/α(x − y))

= s−d/α p

(
t∗, s−1/α

2
(2x − 2y)

)
.

For any fixed t > 0, we choose k large enough so that 2k t > t̃ .

p(t, x − y) ≥ s−d/α p
(
t∗, 2s−1/αx

)
p

(
t∗, 2s−1/α y

)
= 2dk/α p

(
2k t, 21+k/αx

)
p

(
2k t, 21+k/α y

)
.

Note that the above holds for any time t . We therefore have

(G̃u0)t0+s(x) =
∫
Rd

p(t0 + s, x − y)u0(y) dy

≥ 2dk/α p
(
2k(t0 + s), 21+k/αx

) ∫
Rd

p
(
2k(t0 + s), 21+k/α y

)
u0(y) dy.

We have that t0 + s ≥ t0. Therefore,

p
(
2k(t0 + s), 21+k/αx

)
≥

(
t0

s + t0

)d/α

p
(
2k t0, 2

1+k/αx
)

We thus have

(G̃u0)t0+s(x) ≥ 2dk/α
(

t0
s + t0

)2d/α

p
(
2k t0, 2

1+k/αx
) ∫

Rd
p

(
2k t0, 2

1+k/α y
)
u0(y) dy.

So now since |x | ≤ t1/α , we have

(G̃u0)t0+s(x) ≥ c1

(
1

t0 + s

)2d/α

,

where the constant c1 is dependent on t0. We can now use similar ideas as in the proof of the
previous result to conclude that if x ∈ B(0, tβ/α), we have

(Gu0)t0+s(x) ≥ c2

(
1

t0 + s

)2βd/α

.

Since we have s ≤ t , we have essentially found a lower bound for (Gu0)t0+s(x); a bound
which depends only on t . This holds for any t0 > 0 and any t > 0.
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We end this section with a few results from [8]. These will be useful for the proofs of our
main results.

Lemma 2.11 (Lemma 2.3 in [8]) Let 0 < ρ < 1, then there exists a positive constant c1
such that or all b ≥ (e/ρ)ρ ,

∞∑
j=0

(
b

jρ

) j

≥ exp

(
c1b

1/ρ
)

.

Proposition 2.12 (Proposition 2.5 in [8]) Let ρ > 0 and suppose f (t) is a locally integrable
function satisfying

f (t) ≤ c1 + κ

∫ t

0
(t − s)ρ−1 f (s)ds forall t > 0,

where c1 is some positive number. Then, we have

f (t) ≤ c2 exp
(
c3(	(ρ))1/ρκ1/ρ t

)
forall t > 0,

for some positive constants c2 and c3.

Also we give the following converse.

Proposition 2.13 (Proposition 2.6 in [8]) Let ρ > 0 and suppose f (t) is nonnegative, locally
integrable function satisfying

f (t) ≥ c1 + κ

∫ t

0
(t − s)ρ−1 f (s)ds forall t > 0,

where c1 is some positive number. Then, we have

f (t) ≥ c2 exp
(
c3(	(ρ))1/ρκ1/ρ t

)
forall t > 0,

for some positive constants c2 and c3.

3 Proofs for the white noise case

3.1 Proofs of Theorem 1.4

Proof We first show the existence of a unique solution. This follows from a standard Picard
iteration; see [23], so we just briefly spell out the main ideas. For more information, see [18].
Set

u(0)
t (x) := (Gu0)t (x)

and

u(n+1)
t (x) := (Gu0)t (x) + λ

∫ t

0

∫
Rd

Gt−s(x − y)σ
(
u(n)
s (y))W (dy ds

)
for n ≥ 0.

Define Dn(t , x) := E|u(n+1)
t (x)− u(n)

t (x)|2 and Hn(t) := supx∈Rd Dn(t , x). We will prove
the result for t ∈ [0, T ], where T is some fixed number. We now use this notation together
with Walsh’s isometry and the assumption on σ to write

123



M. Foondun, E. Nane

Dn(t, x) = λ2
∫ t

0

∫
Rd

G2
t−s(x − y)E

∣∣∣σ
(
u(n)
s (y)

)
− σ

(
u(n−1)
s (y)

)∣∣∣2 dy ds

≤ λ2L2
σ

∫ t

0
Hn−1(s)

∫
Rd

G2
t−s(x − y) dy ds

≤ λ2L2
σ

∫ T

0

Hn−1(s)

(t − s)dβ/α
ds

We therefore have

Hn(t) ≤ λ2L2
σ

∫ T

0

Hn−1(s)

(t − s)dβ/α
ds.

We now note that the integral appearing on the right hand side of the above display is finite

when d < α/β. Hence, by Lemma 3.3 in Walsh [23], the series
∑∞

n=0 H
1
2
n (t) converges

uniformly on [0, T ].Therefore, the sequence {un} converges in L2 and uniformly on [0, T ]×
R
d and the limit satisfies (1.4). We can prove uniqueness in a similar way. We now turn to

the proof of the exponential bound. From Walsh’s isometry, we have

E|ut (x)|2 = |(Gu0)t (x)|2 + λ2
∫ t

0

∫
Rd

G2
t−s(x − y)E|σ(us(y))|2dy ds.

Since we are assuming that the initial condition is bounded, we have that |(Gu0)t (x)|2 ≤ c1
and the second term is bounded by

λ2L2
σ

∫ t

0

∫
Rd

G2
t−s(x − y)E|us(y)|2dy ds

≤ c1λ
2L2

σ

∫ t

0

1

(t − s)dβ/α
sup
y∈Rd

E|us(y)|2dy ds.

We therefore have

sup
x∈Rd

E|us(x)|2 ≤ c1 + c2λ
2L2

σ

∫ t

0

1

(t − s)dβ/α
sup
y∈Rd

E|us(y)|2 ds.

The renewal inequality in Proposition 2.12 with ρ = (α − dβ)/α proves the result. 
�
3.2 Proof of Theorem 1.6

The proof of Theorem 1.6 will rely on the following observation. From Walsh isometry, we
have

E|ut (x)|2 = |(Gu0)t (x)|2 + λ2
∫ t

0

∫
Rd

G2
t−s(x − y)E|σ(us(y))|2dy ds.

For any fixed t0 > 0, we use a change of variable and the fact that all the terms are non-
negative to obtain

E|ut+t0(x)|2 ≥ |(Gu0)t+t0(x)|2 + λ2l2σ

∫ t

0

∫
Rd

G2
t−s(x − y)E|us+t0(y)|2dy ds.
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Using the above relation again, we obtain

E|ut+t0(x)|2 ≥ |(Gu0)t+t0(x)|2

+ λ2l2σ

∫ t

0

∫
Rd

G2
t−s(x − y)|(Gu0)s+t0(x)|2dy ds

+ λ4l4σ

∫ t

0

∫
Rd

∫ s

0

∫
Rd

G2
t−s(x − y)G2

s−s1(y − z)E|us1+t0(z)|2dz ds1dy ds.
Using the same procedure recursively, we obtain

E|ut+t0(x)|2
≥ |(Gu0)t+t0(x)|2

+
∞∑
k=1

λ2kl2kσ

∫ t

0

∫
Rd

∫ s1

0

∫
Rd

. . .

∫ sk−1

0

∫
Rd

|(Gu0)t0+sk (zk)|2

k∏
i=1

G2
si−1−si (zi−1, zi ) dzk+1−i dsk+1−i ,

(3.1)

where we have used the convention that s0 := t and z0 := x . Let x ∈ B(0, tβ/α) and
0 ≤ s ≤ t and set

(Gu0)t0+s(x) ≥ gt . (3.2)

The existence of such a function gt is guaranteed by Lemma 2.9 and Remark 2.10. We can
now use the above representation to prove the following result.

Proposition 3.1 Fix t0 > 0 such that for t ≥ 0,

E
∣∣ut+t0(x)

∣∣2 ≥ g2t

∞∑
k=0

(
λ2l2σ c1

)k (
t

k

)k(α−βd)/α

for x ∈ B(0, tβ/α),

where c1 is a positive constant.

Proof Our starting point is (3.1). Recall the notation introduced above,

(Gu0)t0+sk (zk) ≥ gt ,

whenever zk ∈ B(0, tβ/α) and 0 ≤ sk ≤ t . The infinite sum of the right of (3.1) is thus
bounded below by

g2t

∞∑
k=1

λ2kl2kσ

∫ t

0

∫
Rd

∫ s1

0

∫
Rd

. . .

∫ sk−1

0

∫
B(0, tβ/α)

k∏
i=1

G2
si−1−si (zi−1, zi ) dzk+1−i dsk+1−i .

We now reduce the temporal domain of integration and make an appropriate change of
variable to find a lower bound of the above display

g2t

∞∑
k=1

λ2kl2kσ

∫ t/k

0

∫
Rd

∫ t/k

0

∫
Rd

. . .

∫ t/k

0

∫
B(0, tβ/α)

k∏
i=1

G2
si (zi−1, zi ) dzk+1−i dsk+1−i .

We will reduce the domain of the function
k∏

i=1

G2
si (zi−1, zi ),
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by choosing the points zi appropriately so that they are ”not too far way”. We choose
z1 ∈ B(0, tβ/α) such that |z1 − x0| ≤ sβ/α

1 . In general, for i = 1, . . . , k, we choose

zi ∈ B(zi−1, s
β/α
i ) ∩ B(0, tβ/α). An immediate consequence of this restriction is that

k∏
i=1

G2
si (zi−1, zi ) ≥

k∏
i=1

c1

s2dβ/α
i

.

Since the area of the set B(zi−1, s
β/α
i ) ∩ B(0, tβ/α) is c2s

dβ/α
i , we have

∫ t/k

0

∫
Rd

∫ t/k

0

∫
Rd

. . .

∫ t/k

0

∫
B(0, tβ/α)

k∏
i=1

G2
si (zi−1, zi ) dzk+1−i dsk+1−i

≥
∫ t/k

0
· · ·

∫ t/k

0

ck3
sdβ/α
i

ds1 · · · dsk

= ck3

(
t

k

)(α−dβ)k/α

.

Putting all the estimates together we have

E|ut+t0(x)|2 ≥ g2t

∞∑
k=0

λ2kl2kσ ck4

(
t

k

)(α−dβ)k/α

.


�
Proof of Theorem 1.6 Wemake the important observation that gt decays no faster than poly-
nomial. After a simple substitution and the use of Lemma 2.11, the theorem is proved. 
�
Remark 3.2 It should be noted that we do not need the full statement of Proposition 3.1. All
that we need is the statement when time is large.

3.3 Proof of Theorem 1.8

Proof From the upper bound in Theorem 1.4, we have that for any x ∈ R
d

E|ut (x)|2 ≤ c1e
c2λ

2α
α−dβ t for all t > 0,

from which we have

lim sup
λ→∞

log logE|ut (x)|2
log λ

≤ 2α

α − dβ
.

Next, we will establish a lower bound. Fix x ∈ R
d , for any t > 0, we can always find a time

t0 such that t = t − t0 + t0 and t − t0 > 0. If t is already large enough so that x ∈ B(0, tβ/α)

then by Proposition 3.1 and Lemma 2.11 we get

lim inf
λ→∞

log logE|ut (x)|2
log λ

≥ 2α

α − dβ
.

Now if x /∈ B(0, tβ/α), we can choose a κ > 0 so that x ∈ B(0, (κt)β/α). Then we can
use the ideas in Proposition 3.1 to end up with
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E|ut+t0(x)|2 ≥ g2κt

∞∑
k=0

(
λ2l2σ c1

)k (
t

k

)k(α−βd)/α

,

and the result follows from this using Lemma 2.11. 
�

4 Proofs for the colored noise case

4.1 Proof of upper bound in Theorem 1.10

Proof The proof of existence and uniqueness is standard. For more information, see [23].
We set

u(0)(t, x) := (Gu0)t (x),
and

u(n+1)(t, x) := (Gu0)t (x) + λ

∫ t

0

∫
Rd

Gt−s(x − y)σ
(
u(n)(s, y)

)
F(dy ds), n ≥ 0.

Define Dn(t , x) := E|u(n+1)(t, x) − u(n)(t, x)|2, Hn(t) := supx∈Rd Dn(t , x) and
�(t, y, n) = ∣∣σ(u(n)(t, y)) − σ(u(n−1)(t, y))

∣∣. We will prove the result for t ∈ [0, T ]
where T is some fixed number. We now use this notation together with the covariance for-
mula (1.6) and the assumption on σ to write

Dn(t, x)

= λ2
∫ t

0

∫
Rd

∫
Rd

Gt−s(x − y)Gt−s(x − z)E[�(s, y, n)�(s, z, n)] f (y, z)dydzds.
Now we estimate the expectation on the right hand side using Cauchy-Schwartz inequality.

E[�(s, y, n)�(s, z, n)] ≤ L2
σ E

∣∣∣u(n)(s, y) − u(n−1)(s, y)
∣∣∣
∣∣∣u(n)(s, z) − u(n−1)(s, z)

∣∣∣
≤ L2

σ

(
E

∣∣∣u(n)(s, y) − u(n−1)(s, y)
∣∣∣2

)1/2

×
(

E

∣∣∣u(n)(s, z) − u(n−1)(s, z)
∣∣∣2

)1/2

≤ L2
σ

(
Dn−1(s, y)Dn−1(s, z)

)1/2

≤ L2
σ Hn−1(s).

Hence we have for γ < α using Lemma 2.7

Dn(t, x)

≤ λ2L2
σ

∫ t

0
Hn−1(s)

∫
Rd

∫
Rd

Gt−s(x − y)Gt−s(x − z) f (y, z)dydz ds

≤ c1λ
2L2

σ

∫ t

0

Hn−1(s)

(t − s)γβ/α
ds.

We therefore have

Hn(t) ≤ c1λ
2L2

σ

∫ t

0

Hn−1(s)

(t − s)γβ/α
ds.
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We now note that the integral appearing on the right hand side of the above display is finite

when d < α/β. Hence, by Lemma 3.3 in Walsh [23], the series
∑∞

n=0 H
1
2
n (t) converges

uniformly on [0, T ].Therefore, the sequence {un} converges in L2 and uniformly on [0, T ]×
R
d and the limit satisfies (1.7). We can prove uniqueness in a similar way.
We now turn to the proof of the exponential bound. Set

A(t) := sup
x∈Rd

E|ut (x)|2.

We claim that there exists constants c4, c5 such that for all t > 0, we have

A(t) ≤ c4 + c5(λLσ )2
∫ t

0

A(s)

(t − s)βγ/α
ds.

The renewal inequality in Proposition 2.12 with ρ = (α−γβ)/α then proves the exponential
upper bound. To prove this claim, we start with the mild formulation given by (1.7), then
take the second moment to obtain the following

E|ut (x)|2 = |(Gu)t (x)|2

+λ2
∫ t

0

∫
Rd×Rd

Gt−s(x, y)Gt−s(x, z) f (y, z)E[σ(us(y))σ (us(z))]dydzds
= I1 + I2. (4.1)

Since u0 is bounded, we have I1 ≤ c4. Next we use the assumption on σ together with
Hölder’s inequality to see that

E[σ(us(y))σ (us(z))] ≤ L2
σ E[us(y)us(z)]

≤ [
E |us(y)|2

]1/2 [
E |us(z)|2

]1/2
≤ sup

x∈Rd
E|us(x)|2.

(4.2)

Therefore, using Lemma 2.7 the second term I2 is thus bounded as follows.

I2 ≤ c5(λLσ )2
∫ t

0

A(s)

(t − s)βγ/α
ds.

Combining the above estimates, we obtain the required result in the claim. 
�
4.2 Proof of lower bound in Theorem 1.10

The starting point of the proof of the lower bound hinges on the following recursive argument.

E|ut (x)|2

= |(Gu)t (x)|2 + λ2
∫ t

0

∫
Rd×Rd

G(t − s1, x, z1)G
(
t − s1, x, z

′
1

)
E

[
σ

(
us1(z1)

)
σ

(
us1(z

′
1)

)
f
(
z1, z

′
1

)]
dz1dz

′
1ds1.

We now use the assumption that σ(x) ≥ lσ |x | for all x to reduce the above to

E |ut (x)|2

≥ |(Gu)t (x)|2 + λ2l2σ

∫ t

0

∫
Rd×Rd

G (t − s1, x, z1)G
(
t − s1, x, z

′
1

)
E

∣∣us1(z1)us1 (
z′1

)∣∣ f
(
z1, z

′
1

)
dz1dz

′
1ds1.
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We now replace the t above by t + t̃ and use a substitution to reduce the above to

E|ut+t̃ (x)|2

≥ ∣∣(Gu)t+t̃ (x)
∣∣2 + λ2l2σ

∫ t

0

∫
Rd×Rd

G (t − s1, x, z1)G
(
t − s1, x, z

′
1

)
E

∣∣ut̃+s1(z1)ut̃+s1(z
′
1)

∣∣ f
(
z1, z

′
1

)
dz1dz

′
1ds1.

We also have

E|ut̃+s1(z1)ut̃+s1(z
′
1)| ≥ |(Gu)t̃+s1(z1)(Gu)t̃+s1(z1)| + λ2l2σ

∫ s1

0

∫
Rd×Rd

G (s1 − s2, z1, z2)G
(
s1 − s2, z

′
1, z

′
2

)
E

∣∣ut̃+s2(z2)ut̃+s2

(
z′2

)∣∣ f
(
z2, z

′
2

)
dz2dz

′
2ds2.

The above two inequalities thus give us

E
∣∣ut+t̃ (x)

∣∣2

≥ ∣∣(Gu)t+t̃ (x)
∣∣2 + λ2l2σ

∫ t

0

∫
Rd×Rd

× G (t − s1, x, z1)G
(
t − s1, x, z

′
1
)
E

∣∣∣ut̃+s1
(z1)ut̃+s1

(
z′1

)∣∣∣ f
(
z1, z

′
1
)
dz1dz

′
1ds1

≥ ∣∣(Gu)t̃+t (x)
∣∣2 + λ2l2σ

∫ t

0

∫
Rd×Rd

× G (t − s1, x, z1)G
(
t − s1, x, z

′
1
)
f
(
z1, z

′
1
)
(Gu)t̃+s1

(z1)(Gu)t̃+s1
(z′1)dz1dz′1ds1

+ (λlσ )4
∫ t

0

∫
Rd×Rd

G(t − s1, x, z1)G(t − s1, x, z
′
1) f (z1, z

′
1)

∫ t̃+s1

0

∫
Rd×Rd

× G(s1 − s2, z1, z2)G
(
s1 − s2, z1,

′ z′2
)
E

∣∣∣ut̃+s2
(z2)ut̃+s2

(z′2)
∣∣∣ f

(
z2, z

′
2
)
dz2dz

′
2ds2dz1dz

′
1ds1.

(4.3)

We set z0 = z′0 := x and s0 := t and continue the recursion as above to obtain

E
∣∣ut̃+t (x)

∣∣2
≥ ∣∣(Gu)t̃+t (x)

∣∣2

+
∞∑
k=1

(λlσ )2k
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

· · ·
∫ sk−1

0

∫
Rd×Rd

∣∣(Gu)t̃+sk (zk)(Gu)t̃+sk (z
′
k)

∣∣
k∏

i=1

G (si−1 − si , zi−1, zi )G
(
si−1 − si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
dzidz

′
idsi .

(4.4)

Therefore,

E
∣∣ut̃+t (x)

∣∣2
≥ ∣∣(Gu)t̃+t (x)

∣∣2

+
∞∑
k=1

(λlσ )2k
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

· · ·
∫ sk−1

0

∫
Rd×Rd

|(Gu)t̃+sk (zk)(Gu)t̃+sk (z
′
k)|

k∏
i=1

G (si−1 − si , zi−1, zi )G
(
si−1 − si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
dzidz

′
idsi .
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Proposition 4.1 There exists a t0 > 0 such that for t > t0,

E|u(t + t0, x)|2 ≥ g2t

∞∑
k=0

(
λ2l2σ c1

)k (
t

k

)k(α−γβ)/α

whenever x ∈ B(0, tβ/α),

where c1 is a positive constant.

Proof We will look at the following term which comes from the recursive relation described
above,

∞∑
k=1

(λlσ )2k
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

· · ·
∫ sk−1

0

∫
Rd×Rd

∣∣(Gu)t̃+sk (zk)(Gu)t̃+sk

(
z′k

)∣∣
k∏

i=1

G (si−1 − si , zi−1, zi )G
(
si−1 − si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
dzidz

′
idsi .

We can bound the above term by

g2t

∞∑
k=1

(λlσ )2k
∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

· · ·
∫ sk−1

0

∫
B(0, tβ/α)×B(0, tβ/α)

k∏
i=1

G (si−1 − si , zi−1, zi )G
(
si−1 − si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
dzidz

′
idsi .

We now make a substitution and reduce the temporal region of integration to write

g2t

∞∑
k=1

(λlσ )2k
∫ t/k

0

∫
Rd×Rd

∫ t/k

0

∫
Rd×Rd

· · ·
∫ t/k

0

∫
B(0, tβ/α)×B(0, tβ/α)

k∏
i=1

G (si , zi−1, zi )G
(
si , z

′
i−1, z

′
i ) f (zi , z

′
i

)
dzidz

′
idsi .

We will further reduce the domain of integration so the function

k∏
i=1

G (si , zi−1, zi )G
(
si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
,

has the required lower bound. For i = 0, · · · , k, we set

zi ∈ B
(
x, sβ/α

1 /2
)

∩ B
(
zi−1, s

β/α
i

)

and

z′i ∈ B
(
x, sβ/α

1 /2
)

∩ B
(
z′i−1, s

β/α
i

)
.

We therefore have |zi − z′i | ≤ sβ/α
1 , |zi − zi−1| ≤ sβ/α

i and
∣∣z′i − z′i−1

∣∣ ≤ sβ/α
i . We use the

lower bound on the heat kernel to find that
k∏

i=1

G (si , zi−1, zi )G
(
si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)

≥ ck

skγβ/α
1

k∏
i=1

1

s2βd/α
i

,
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for some c > 0. We setAi := B
(
x, sβ/α

1 /2
)

∩ B
(
zi−1, s

β/α
i

)
andA′

i := B
(
x, sβ/α

1 /2
)

∩
B

(
z′i−1, s

β/α
i

)
. We will further choose that sβ/α

i ≤ sβ/α
1
2 and note that |Ai | ≥ c1s

dβ/α
i and

|A′
i | ≥ c1s

dβ/α
i . We therefore have

g2t

∞∑
k=1

(λlσ )2k
∫ t/k

0

∫
Rd×Rd

∫ t/k

0

∫
Rd×Rd

· · ·
∫ t/k

0

∫
B(0, tβ/α)×B(0, tβ/α)

k∏
i=1

G(si , zi−1, zi )G
(
si , z

′
i−1, z

′
i

)
f
(
zi , z

′
i

)
dzidz

′
idsi

≥ g2t

∞∑
k=1

(λlσ )2k
∫ t/k

0

∫
A1×A′

1

∫ s1/2β/α

0

∫
A2×A′

2

· · ·
∫ s1/2β/α

0

∫
Ak×A′

k

× 1

skγβ/α
1

k∏
i=1

1

s2βd/α
i

dzidz
′
idsi

≥ g2t

∞∑
k=1

(λlσ c2)
2k

∫ t/k

0

1

skγβ/α
1

sk−1
1 ds1

≥ g2t

∞∑
k=1

(λlσ c3)
2k

(
t

k

)k(1−γβ/α)

.

We now take time large enough and use Lemma 2.11 to complete the proof of theorem. 
�
4.3 Proof of Theorem 1.12

The proof of this theorem is exactly as that of Theorem 1.8 and it is omitted. 
�
4.4 Proof of Theorem 1.13

Proof We will make use of the Kolmogorov’s continuity theorem. Therefore we consider
the increment E|ut+h(x) − ut (x)|p for h ∈ (0, 1) and p ≥ 2. We have

ut+h(x) − ut (x) =
∫
Rd

[Gt+h(x − y) − Gt (x − y)]u0(y)dy

+ λ

∫ t

0

∫
Rd

[Gt+h−s(x − y) − Gt−s(x − y)]σ(us(y))F(ds dy)

+ λ

∫ t+h

t

∫
Rd

Gt+h−s(x − y)σ (us(y))F(ds dy).

(4.5)

The first term,
∫
Rd Gt (x − y)u0(y)dy is smooth for t > 0. This essentially follows from

the fact that under the condition on the initial condition, we can interchange integral and
derivatives. We will therefore look at higher moments of the remaining terms. Recall that
we can use the similar ideas in the proof of Theorem 1.10 to show that supx∈Rd E|ut (x)|p is
finite for all t > 0. We use the Burkholder’s inequality together with Proposition 2.6 to write
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E

∣∣∣∣
∫ t

0

∫
Rd

[
Gt+h−s(x − y) − Gt−s(x − y)

]
σ(us(y))F(dsdy)

∣∣∣∣
p

≤ c1

∣∣∣∣
∫ t

0

∫
Rd

∣∣G∗
t−s+h(ξ) − G∗

t−s(ξ)
∣∣2 1

|ξ |d−γ
dξds

∣∣∣∣
p/2

≤ c1h
p(1−βγ/α)

2 .

(4.6)

Similarly we have

E

∣∣∣∣
∫ t+h

t

∫
Rd

Gt+h−s(x − y)σ (us(y))F(dsdy)

∣∣∣∣
p

≤ c2

∣∣∣∣
∫ t+h

t

∫
Rd

∫
Rd

Gt+h−s(x − y)Gt+h−s(x − z) f (y, z)dsdydz

∣∣∣∣
p/2

≤ c2

∣∣∣∣
∫ t+h

t

∫
Rd

[
Eβ

(−ν|ξ |α(t + h − s)β
)]2 1

|ξ |d−γ
dξds

∣∣∣∣
p/2

≤ c1

(
C∗
1h

1 − βγ/α

) p(1−βγ/α)
2

.

(4.7)

Combine the above estimates, we see that

E|ut+h(x) − ut (x)|p ≤ Ch
p(1−βγ/α)

2 .

Now an application of Kolmogorov’s continuity theorem as in [2] completes the proof. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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