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Hilbert Exclusion: Improved Metric Search
through Finite Isometric Embeddings
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Most research into similarity search in metric spaces relies upon the triangle inequality property. This prop-
erty allows the space to be arranged according to relative distances to avoid searching some subspaces.
We show that many common metric spaces, notably including those using Euclidean and Jensen-Shannon
distances, also have a stronger property, sometimes called the four-point property: in essence, these spaces
allow an isometric embedding of any four points in three-dimensional Euclidean space, as well as any three
points in two-dimensional Euclidean space. In fact, we show that any space which is isometrically embed-
dable in Hilbert space has the stronger property. This property gives stronger geometric guarantees, and one
in particular, which we name the Hilbert Exclusion property, allows any indexing mechanism which uses
hyperplane partitioning to perform better. One outcome of this observation is that a number of state-of-the-
art indexing mechanisms over high dimensional spaces can be easily refined to give a significant increase in
performance; furthermore, the improvement given is greater in higher dimensions. This therefore leads to a
significant improvement in the cost of metric search in these spaces.
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1. INTRODUCTION
In the realm of similarity search, many metric indexing techniques are available.
These rely on the metric properties of the distance function used, and in particular
use the triangular inequality property in various ways to exclude parts of the space
from a search for values similar to a given query.

Any proper metric space (U, d) is isometrically 3-embeddable in two dimensional
Euclidean space (`22). That is, for any three objects within (U, d), there exists a function
mapping those objects into `22 which preserves the distances between them. This is in
fact a corollary of the metric properties of d.
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In this paper we consider spaces with the stronger property of being isometrically
4-embeddable in three dimensional Euclidean space (`32). We show that these spaces
include all those which have isometric embeddings in Hilbert space, notably including
any space under Euclidean distance, as well as the proper metric forms of Jensen-
Shannon, Triangular Discrimination and a novel form of Cosine distance.

Such spaces give stronger geometric properties. All metric indexing currently relies
on one (or both) of two core principles: exclusion based on a bounding radius, or exclu-
sion based on a hyperplane partition, both of which can be explained in terms of their
3-embeddabilty property. Using the stronger 4-embeddability, we show that a greater
degree of exclusion is possible, and that this exclusion degrades more slowly as higher
dimensions are considered.

Our main result is very simple. Consider any four points p1, p2, q and s in a metric
space (U, d), where the intent is that q is a query, s is a solution to this query (i.e.
d(q, s) ≤ t for some real value t), and p1 and p2 are points within the space which have
been previously used to structure the data.

During the progress of a query evaluation, the distances d(q, p1) and d(q, p2) are
evaluated. Assuming without loss of generality that d(q, p2) ≤ d(q, p1), then a well
known property used during search is

d(q, p1)− d(q, p2)
2

> t⇒ d(s, p1) > d(s, p2)

Here, we show that for certain common classes of spaces

d(q, p1)
2 − d(q, p2)2

2 d(p1, p2)
> t⇒ d(s, p1) > d(s, p2)

Both properties can be used to avoid searching subspaces where all elements are
known to be closer to p1 than p2. The second property however is strictly weaker, mean-
ing that any indexing mechanism which uses the first can be made more efficient1.

In the context of exact metric indexing, the best performing index for general pur-
pose use is currently believed to be the distal SAT [Chávez et al. 2014; 2016], which
uses a combination of pivot and hyperplane-based exclusion. For this structure, we
show a significant performance increase for Euclidean and Jensen-Shannon spaces,
especially in higher dimensions. This therefore gives, for these spaces, a new high per-
formance benchmark for similarity search.

The rest of this article is structured as follows. Section 2 gives a general context
of metric search and finite isometric embedding; after basic definitions, it goes on to
show how the essential mechanisms of metric search can be explained in terms of fi-
nite embeddings. Section 3 briefly shows, in outline, why better performance can be
expected from a space which is 4-embeddable in `32. Section 4 gives a formal defini-
tion of our new exclusion property for hyperplane partitioning, and proves its appli-
cability to any space which is isometrically 4-embeddable in `32. Section 5 gives some
background mathematics of Hilbert spaces, and shows the 4-embeddabilty property
for three important metrics. Section 6 gives an analysis of the improvement, includ-
ing relative performance measurements for some metric index implementations which
use hyperplane partitioning. Section 7 shows how the new exclusion criterion degrades
relatively less severely over higher dimensions than those currently used, and Section
8 summarises and outlines further possibilities.

1The distance d(p1, p2) can be evaluated as the index is built, not during the query.

ACM Transactions on Information Systems, Vol. V, No. N, Article XXXX, Publication date: XXXX 2016.



XXXX:3

2. BACKGROUND AND RELATED WORK
2.1. Similarity Search and Metric Indexing
Our context of interest is in exact search in general metric spaces. That is, we are in-
terested in searching a (large) finite set of objects S which is a subset of an infinite set
U , where (U, d) is a metric space. The general requirement is to efficiently find mem-
bers of S which are close to an arbitrary member of U , where the distance function d
gives the only way by which any two objects may be compared. There are many im-
portant practical examples captured by this mathematical framework, see for example
[Chávez and Navarro 2005; Zezula et al. 2006].

For (U, d) to be a metric space, the distance function d : U×U → R requires to satisfy

— Positivity: ∀ a, b ∈ U, d(a, b) ≥ 0 with equality if, and only if, a = b;
— Symmetry: ∀ a, b ∈ U, d(a, b) = d(b, a);
— Triangle inequality: ∀ a, b, c ∈ U, d(a, c) ≤ d(a, b) + d(b, c).

Such spaces are typically searched with reference to a query object q ∈ U . A thresh-
old search for some threshold t, based on a query q ∈ U , has the solution set
{s ∈ S such that d(q, s) ≤ t}.

Typically S is too large to allow an exhaustive search. However such queries can
often be performed efficiently by use of a metric index, one of a large family of data
structures which make use of the triangle inequality property in order to arrange the
set of objects S in such a way as to minimise the time required to retrieve the query
result. Efficiency is primarily achieved by avoiding unnecessary distance calculations,
although the efficient use of memory hierarchies is also extremely important. Both of
these are optimised by structuring the set based on relative distances of objects from
each other, so that triangle inequality can be used to determine subsets which do not
need to be exhaustively checked. Such avoidance is normally referred to as exclusion.

For exact metric search, almost all indexing methods can be divided into those which
at each exclusion possibility use a single “pivot” point to give radius-based exclusion,
and those which use two reference points to give hyperplane-based exclusion. Many
variants of each have been proposed, including many hybrids; [Chávez et al. 2001],
[Zezula et al. 2006] give excellent surveys. In general the best choice seems to depend
on the particular context of metric and data.

Here we focus particularly on mechanisms which use hyperplane-based exclusion.
The simplest such index structure is the Generalised Hyperplane Tree [Uhlmann
1991]. Others include the Monotonic Bisector Tree [Noltemeier et al. 1992], the Met-
ric Index [Novak et al. 2011], and the Spatial Approximation Tree [Navarro 2002].
This last has various derivatives, notably including the Dynamic SAT [Navarro and
Reyes 2002] and the Distal SAT [Chávez et al. 2016], which includes a variant SATout
which is believed to be, at time of writing, the most efficient known general-use index-
ing structure for performing exact search [Chávez et al. 2016]; therefore a significant
improvement on this, as we show here, is a significant result.

2.2. Finite Isometric Embeddings
An isometric embedding of one metric space (V, dv) in another (W,dw) can be achieved
when there exists a mapping function f : V → W such that dv(x, y) = dw(f(x), f(y)),
for all x, y ∈ V . A finite isometric embedding occurs whenever this property is true for
any finite selection of n points from V , in which case the terminology used is that V is
isometrically n-embeddable in W .

The first observation to be made in this context is that any metric space is isomet-
rically 3-embeddable in `22. This is apparent from the triangle inequality property of
a proper metric, as illustrated in Figure 1. In fact the two properties are equivalent:
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Fig. 1: For any three points x1, x2 and x3 whose distances satisfy the triangle inequality
property, a triangle can be constructed within 2D Euclidean space such that x′1 is at
the origin, x′2 lies on the X-axis, and x′3 is where the distances B and C intersect.

for any semi-metric space2 (V, dv) which is isometrically 3-embeddable in `22, triangle
inequality also holds.

Much work was done on finite isometric embeddings in the 1930s, but it does not
appear to have been a “hot topic” since then. Blumenthal [Blumenthal 1933] provides
an excellent and concise summary of this work as it pertains to ours. He attributes our
observation above, that any semi-metric space which is 3-embeddable in `22 is a metric
space, to Menger. He uses the phrase the four-point property to mean a semi-metric
space which is isometrically 4-embeddable in `32. Wilson [Wilson 1932] shows various
properties of such spaces, and Blumenthal points out that results given by Wilson,
when combined with work by Menger in [Menger 1931], generalise to show that some
spaces have the n-point property (i.e. any n points can be isometrically embedded in
`n−12 .) This is in fact a more general result than our Lemma 5.2 which uses a more
modern formulation for high dimensional Euclidean space.

The most important results in finite isometric embeddings from our perspective are
given by Schoenberg and Blumenthal. [Schoenberg 1938] shows an initially surprising
result that if a kernel function K has certain simple properties, then it can be used
to construct a metric space which is isometrically embeddable in a Hilbert space. Blu-
menthal [Blumenthal 1953] shows that any space which is isometrically embeddable
in a Hilbert space has the n-point property for every possible integer n. In combina-
tion these are extraordinarily strong from our perspective: for any kernel function K
with the correct properties, we can construct a proper metric space with the four-point
property. We expand on this observation in Section 5.

Although normally expressed in terms of the property of triangle inequality, the
properties of a metric space that allow indexing can be equally well expressed in terms
of the geometric guarantees afforded according to the 3-embeddability property in `22.
To set the context, we briefly explain the two main indexing principles in terms of this
property.

2a space where triangle inequality is not guaranteed
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Fig. 2: Pivot-based exclusion illustrated by 3-embedding in `22. Objects in Sin are at
most distance m from p, and objects in Sout are at least m from p. Given d(q, p) > m+ t,
Sin cannot contain a solution to the query. Similarily if d(q, p) < m−t, Sout cannot. Such
diagrams should be treated with extreme care: for a general metric space, no more than
three objects have a guarantee of isometric embedding within 2D Cartesian space. In
these cases, it is necessary only to consider an embedding of the pivot, the query, and
an arbitrary object within the solution space to see that the distance guarantee holds.

2.3. Pivot-based indexing
This technique entails the selection of a pivot point p ∈ S, and the construction of one
or more subsets of S based on a fixed distance m from p, e.g. Sin where s ∈ Sin ⇒
d(p, s) ≤ m. For a query q, d(q, p) is calculated; if this is greater than m + t, for a
query threshold t, then no element of S within distance t of q can be within Sin and
every element of Sin can therefore be excluded from the search. Similarly, Sout could
be constructed such that s ∈ Sout ⇒ d(p, s) > m, in which case the elements of Sout can
be excluded if d(q, p) ≤ m− t.

The validity of the pivoting principle can be shown algebraically using the triangle
inequality property of the metric, and many different mechanisms have been described
using it [Chávez et al. 2001; Zezula et al. 2006]. They are often illustrated in the man-
ner of Figure 2; using such illustrations relies upon isometric 3-embeddability within
`22 of any metric space, but should also be treated with care whenever more than three
objects are considered, as the distances among them cannot in general be preserved.

2.4. Partition-based indexing
In this type of indexing, two elements of S are chosen, and the rest of S is divided into
two subsets according to which of these elements is closer. Formally:

p1, p2 ∈ S
Sp1 = {s ∈ S − {p1, p2} , d(s, p1) < d(s, p2)}
Sp2 = {s ∈ S − {p1, p2} , d(s, p1) ≥ d(s, p2)}

To evaluate a query over q, the distances d(q, p1) and d(q, p2) are first calculated. If
|d(q, p1)−d(q, p2)| > 2t, then the subset associated with the point further from q does not
intersect with the solution set of the query and these values can be excluded from the
search. Again, the exclusion condition is straightforward to derive algebraically from
the triangle inequality property, but can also be shown in terms of 3-embeddability
within `22.
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Fig. 3: The two pivot points and any solution to the query can be isometrically embed-
ded in `22. The point q cannot be drawn in the same diagram. Given its distance from
p1 and p2, any solution in the original metric space must lie in the region bounded by
the four arcs shown in the `22 projection. If the point s lies to the right of Vp1,p2 in `22,
there is therefore no requirement to search to the left of the hyperplane in the original
space. By symmetry, if |d(q, p1) − d(q, p2)| > 2t, then half of the search space can be
excluded.

Figure 3 shows a graphical interpretation of this situation using the `22 embedding.
The three points chosen for illustration, relying on the 3-embedding property, are p1,
p2, and an arbitrary solution point to the query q. The two pivot points and any solution
to the query can be isometrically embedded in `22. In general the point q may not be
isometrically embedded in the same plane as the two pivot points p1, p2, and a solution
s, and therefore cannot be drawn in the diagram.

The line Vp1,p2 represents a boundary between Sp1 and Sp2 in the original space. If
the whole of the region bounded by the four arcs lies to one side of this line, there is no
requirement to search in the other part of the space. It can be seen from the diagram, if
q is closest to p2, that this occurs when d(q, p1)−t > d(q, p2)+t, i.e. d(q, p1)−d(q, p2) > 2t.
This illustration alone in fact is not quite convincing; it must be further observed that,
for any two 3-embeddings where two of the points are the same (in this case p1 and p2),
then embedding functions can be chosen that map those two points to the same two
points in `22 (e.g. see Figure 1) thus preserving the semantics of the line Vp1,p2 .

3. PARTITION-BASED INDEXING WITH 4-EMBEDDING IN `32

We introduce the main result of this paper with simple observation that, for spaces
that are isometrically 4-embeddable in `32, a tighter exclusion condition is possible for
partitions.

ACM Transactions on Information Systems, Vol. V, No. N, Article XXXX, Publication date: XXXX 2016.
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Fig. 4: Three queries, q1, q2 and q3, each with threshold t, on the left side of the bound-
ary Vp1,p2 . Since d(p2, q3)− d(p1, q3) < 2t, Sp2 cannot be excluded from the search on q3.
(p1 = (−5, 0), p2 = (5, 0), q3 = (−1.1, 4), t = 1). The hyperbola curve represents all possi-
ble points x ∈ Sp1 such that d(p2, x) − d(p1, x) = 2t, i.e. the boundary of the exclusion
condition.

Figure 4 shows an example taken from a metric space 3-embedded in `22, that is a
standard metric space. Of the three queries, only q1 and q2 allow the partition on the
far side of the hyperplane to be excluded, as for q3 the exclusion condition is not met,
even although the solution space appears geometrically separated from the right-hand
side. This appearance however is an illusion, as in a general metric space it would
require the isometric embedding of four points (p1, p2, q3 and s, for any solution s) in
the diagram.

In general, the boundary defined by the exclusion condition is given by the locus of
points x such that d(x, p2) − d(x, p1) = 2t which defines a hyperbola focussed at p1
and p2, with semi-major axis t. The minimum distance of this hyperbola from the line
Vp1,p2 is t, but this occurs only on the line passing through p1 and p2. When considering
this diagram in two dimensions, the relative distances among p1, p2 and any individual
qi are significant, but as a general metric space guarantees only 3-embeddability, the
circles drawn around the queries are meaningless with respect to the original space.

Consider now Figure 5, which shows the same situation but relying on a 4-
embeddability in `32. Here the relative distances among any four points can be safely
considered: in this case p1, p2, q, and any solution to q. The plane on which the diagram
is drawn is that containing p1, p2 and q, and therefore the locus of any solution to q
consists of a sphere, radius t, centred around q.

It is clear from this diagram, in comparison with Figure 3, that a more useful ex-
clusion condition can be used: whenever the distance between q and Vp1,p2 is greater
than t, Sp1 does not require to be searched. Other than the single point on the line
through p1 and p2 this distance is always strictly less than the nearest point on the
corresponding hyperbola, and thus more exclusions are always possible.

Figure 6 gives an illustration of the two boundary conditions in `32. It can be seen
that our new exclusion condition is weaker than the normal, hyperbolic, condition; in
this sense weaker implies better, as it allows more queries to exclude the opposing
semispace from further consideration. For discussion in the rest of the paper, we re-
fer to the new exclusion condition as Hilbert Exclusion, and the former condition as
Hyperbolic Exclusion. We proceed with a formal definition and proof of correctness of
Hilbert Exclusion.
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Fig. 5: Four points (p1, p2, q and s, s.t. d(q, s) ≤ t) in `32. For fixed p1, p2 and q, any
solution to the query lies within the sphere centred around q and cannot lie within Sp1 ,
even although d(q, p1)− d(q, p2) < 2t. Note that Vp1,p2 in the figure now represents the
hyperplane that divides the space into two subspaces: objects nearer to p1 belonging to
the left subspace and objects nearer to p2 to the right.

4. THE HILBERT EXCLUSION CONDITION
THEOREM 4.1. Consider any three points p1, p2, q ∈ `32 with d(q, p2) < d(q, p1). Then

the condition
d(q, p1)

2 − d(q, p2)2

2 d(p1, p2)
> t (1)

implies that d(s, p2) < d(s, p1) for all s s.t. d(q, s) ≤ t.
PROOF.
It is sufficient to prove that the distance between the point q and the plane Vp1,p2 is

greater that t. In this case, d(s, p2) < d(s, p1) for all s s.t. d(q, s) ≤ t.
The equation of the plane Vp1,p2 can be written as the scalar product (p2 − p1) · (x −

(p2+p1)
2 ) = 0, and so its distance from q is given by

dist(q, Vp1,p2) =
∣∣∣∣(q − (p2 + p1)

2

)
· (p2 − p1)
‖p2 − p1‖2

∣∣∣∣ = d(q, p1)
2 − d(q, p2)2

2 d(p1, p2)

Therefore if dist(q, Vp1,p2) > t, any point within distance t of q is closer to p2 than to
p1

The practical application of this theorem is in search indexes which partition the
search space. The exclusion condition

d(q, p1)
2 − d(q, p2)2

2 d(p1, p2)
> t

ACM Transactions on Information Systems, Vol. V, No. N, Article XXXX, Publication date: XXXX 2016.
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Fig. 6: This illustration shows the geometric principle behind the new exclusion con-
dition, which can be applied to any metric space which is isometrically 4-embeddable
in 3D Euclidean space. Here pivots are placed at (−1, 0, 0) and (1, 0, 0), the thresh-
old selected is 0.5. The plane and hyperboloid shown in the 3D space represent the
boundaries of the two exclusion conditions we now refer to as Hilbert Exclusion and
Hyperbolic Exclusion respectively.

can be used in place of

d(q, p1)− d(q, p2)
2

> t

in order to exclude any subspace which is known to be closer to p1 than to p2. The
important point in our context is that the first condition is weaker than the second3,
and is therefore in general a more useful exclusion condition.

THEOREM 4.2. For any metric space (U, d), and for any three points p1, p2, q ∈ U , the
exclusion condition of Theorem 4.1 holds if (U, d) is isometrically 4-embeddable in `32.

PROOF. Let (U, d) be a metric space isometrically 4-embeddable in `32. Let t be a real
positive number and p1, p2, q ∈ U be three points such that d(q, p2) < d(q, p1) and

d(q, p1)
2 − d(q, p2)2

2 d(p1, p2)
> t. (2)

For any s ∈ U such that d(q, s) ≤ t we want to prove that d(s, p2) < d(s, p1). Since
(U, d) is isometrically 4-embeddable in `32, there exists a function f : (U, d) → `32 which

3A simple proof is given in Appendix A.
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preserves all the six distances:

‖f(p1)− f(p2)‖2 = d(p1, p2) (3)
‖f(q)− f(p1)‖2 = d(q, p1) (4)
‖f(q)− f(p2)‖2 = d(q, p2) (5)
‖f(s)− f(q)‖2 = d(s, q) ≤ t (6)
‖f(s)− f(p1)‖2 = d(s, p1) (7)
‖f(s)− f(p2)‖2 = d(s, p2). (8)

Equations (3)-(6) together with equation (2) imply that points {f(p1), f(p2),
f(q), f(s)} ∈ `32 satisfy the exclusion condition of Theorem 1. Thus, f(s) is closer to
f(p2) than to f(p1), i.e., ‖f(s) − f(p1)‖2 > ‖f(s) − f(p2)‖2. This proves also that s is
closer to p2 than to p1, in fact

d(s, p1) = ‖f(s)− f(p1)‖2 > ‖f(s)− f(p2)‖2 = d(s, p2).

Note that, for any solution s in U , a different mapping function f may be required,
however the only importance of this function is that, for any four points, it exists: there
is no requirement to identify it.

5. VECTOR SPACES ISOMETRICALLY 4-EMBEDDABLE IN `32

5.1. `n2 Space
Euclidean distance applied over many-dimensional data is probably the most common
of metric searches. In these cases, we have an immediate result:

THEOREM 5.1. Any n-dimensional Euclidean space (i.e. an `n2 space, for any n) is
4-embeddable in `32

LEMMA 5.2. In n dimensions, precisely one k-dimensional hyperplane passes
through any (k + 1) points that do not lie in a (k − 1)-dimensional hyperplane.4 More-
over, a k-dimensional hyperplane can be regarded as a k-dimensional space in its own
right. (See for example [Aleksandrov et al. 1999], Chapter 7.)

PROOF. From Lemma 5.2, any `n2 space is (k + 1)-embeddable in `k2 . Therefore any
`n2 space is 4-embeddable in `32.

COROLLARY 5.3. The Hilbert Exclusion Condition is valid over Euclidean spaces of
any dimension.

However, we have a more general result: any metric space which has an isometric
embedding in a Hilbert space is also 4-embeddable in `32. This includes Euclidean space
of any dimension, but also includes other important spaces, notably any governed by
the Jensen-Shannon distance.

5.2. Inner Product Spaces and Hilbert Spaces
The importance of Hilbert spaces is the generalisation of the notion of Euclidean space
by extending the methods of vector algebra and calculus to spaces with any finite or
infinite number of dimensions. A Hilbert space is an abstract vector space possessing
the structure of an inner product that allows length and angle to be measured which
gives certain geometric properties. These properties extend to abstract, non-geometric

4If the points are coplanar, an infinity of such hyperplanes exist; the important point for our purposes is
only that at least one such hyperplane exists.
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spaces which can be isometrically embedded in a Hilbert space. The key property of
interest here is in 4-point isometric embedding in `32.

LEMMA 5.4 (SHOENBERG’S THEOREM [SCHOENBERG 1938; TOPSØE 2003]). Let
X be a nonempty set and K : X × X → R a mapping that satisfies the positivity and
symmetric proprieties and such that, for all finite sets (ci)i≤n of real numbers and all
finite sets (xi)i≤n of points in X, the implication

n∑
i=1

ci = 0⇒
n∑

i,j=1

cicjK(xi, xj) ≤ 0 (9)

holds (i.e., K is conditionally negative semidefinite function). Then (X,
√
K) is a metric

space which can be embedded isometrically as a subspace of a real Hilbert space.

The main importance from our perspective is that, given a metric space (X,
√
K), it

is sufficient for K to be a conditionally negative semidefinite function in order to have
isometric embeddability into a Hilbert Space.

LEMMA 5.5 (BLUMENTHAL LEMMA 53.1 [BLUMENTHAL 1953]).
A numerable semimetric space is isometrically embeddable in a Hilbert space if and
only if it is isometrically n-embeddable in `n−12 for every positive integer n.

LEMMA 5.6 (SCHOLTES PROPOSITION 1.3 [SCHOLTES 2013]). Let (X, ‖ · ‖) be a
normed vector space. Then the following statements are equivalent:

— (X, ‖ · ‖) is an inner product space, i.e., there exists an inner product < ·, · > on X
which induces the norm: ∀x ∈ X, ‖x‖ = √< x, x >

— all subsets {u, v, w, x} ⊂ X are isometrically embeddable in `32.

By definition, any Hilbert space is a normed vector space which is also an inner prod-
uct space. From the above lemmata, we can observe that for any semimetric, negative
semidefinite kernel function K over Rn, then (Rn,

√
K) is a proper metric space which

can be searched using our new exclusion rule. The fact that the resulting metric space
is a subspace of Hilbert space is not strictly necessary for this purpose, although it
gives other potentially valuable geometric properties as well. In fact, the Hilbert em-
beddability guarantees the n-point property for all n, while just the 4-point property
is required for our new exclusion rule. It is worth noting that in [Blumenthal 1953] a
weaker version of the Schoenberg’s theorem is used to characterise any metric space
which has the 4-point property:

LEMMA 5.7 ([BLUMENTHAL 1953]). A metric space (X, d) is isometrically 4-
embeddable in `32 if and only if for all set {c1, c2, c3, c4} of real numbers and all finite
sets {x1, x2, x3, x4} of points in X, the implication

4∑
i=1

ci = 0⇒
4∑

i,j=1

cicjd(xi, xj)
2 ≤ 0 (10)

holds.

5.3. Jensen-Shannon Distance
LEMMA 5.8 (TOPSØE [FUGLEDE AND TOPSØE 2004]). For an appropriate defini-

tion of Jensen-Shannon divergence (JSD), the space (M1
+(A),

√
JSD) is isometrically

isomorphic to a subset in Hilbert Space.
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The term Jensen-Shannon divergence is used variously with slightly different mean-
ings; to avoid ambiguity, we define it here as

JSD(v, w) = 1− 1
2

∑
i

(h(vi) + h(wi)− h(vi + wi))

where

h(x) = −x log2 x
which formulation, explained in [Connor et al. 2013], is consistent with other authors
and neatly bounds the range into [0,1].

Here, the set M1
+(A) is the set of probability distributions, which we can safely inter-

pret as a set of positive numeric vectors {v} ∈ Rn for some n where
∑n
i vi = 1 (although

the original definition extends to continuous spaces as well.) Topsøe uses Schoenberg’s
conjecture to prove this property by showing that JSD is itself a negative semidefi-
nite mapping with the semi-metric properties. Although it has already been proved by
more than one author that Jensen-Shannon distance (with the meaning of

√
JSD in

Topsøe’s notation) is a proper metric ([Endres and Schindelin 2003],[Österreicher and
Vajda 2003]) this proof of Hilbert space embedding gives that as a rather more elegant
side-effect.

THEOREM 5.9. The space (M1
+(A),

√
JSD) is isometrically 4-embeddable in `32, and

can therefore use Hilbert Exclusion with hyperplane partitioning.

This is now a direct consequence of Lemmata 5.6 and 5.8.

5.4. Triangular Distance
To establish the generality of our results, we give one more example of a proper metric
which is also Hilbert space embeddable and can therefore be indexed using Hilbert
Exclusion.

The function

k(v, w) =
∑
i

(vi − wi)2

vi + wi

(where v, w ∈ Rn,
∑
i vi =

∑
i wi = 1) has been identified and named in [Topsøe 2000]

as Triangular Discrimination. Although rarely used in pratice, it is of significant in-
terest as it has relatively tight upper and lower bounds over the much more expensive
Jensen-Shannon distance [Topsøe 2000]. k is a semi-metric, so if it is negative semidef-
inite then

√
k is a Hilbert-embeddable proper metric.

As k is a summation it is sufficient to prove that

f(x, y) =
(x− y)2

x+ y

is conditionally negative semidefinite. Recalling the definition of negative semidefinite
(Equation 10) we require ∑

i,j

(xi − xj)2

xi + xj
cicj ≤ 0

for any finite set of real numbers (ci)i≤m such that
∑
i ci = 0 and for any finite set

(xi)i≤n of points in X.
Observing that (xi − xj)2 = (xi + xj)

2 − 4xixj we obtain
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m∑
i,j

cicj
(xi − xj)2

xi + xj
=

m∑
i,j

cicjxi +

m∑
i,j

cicjxj − 4

m∑
i,j

cicj
xixj
xi + xj

= −4
m∑
i,j

cicj
xixj
xi + xj

as the first two terms sum to zero. Thus it is sufficient to prove that
m∑
i,j

cicj
xixj
xi + xj

≥ 0

As the index i, j such xi = 0 or xj = 0 do not contribute to the summation, we can
assume that all the xi, xj are positive.

m∑
i,j

cicj
xixj
xi + xj

=

m∑
i,j

cicjxixj

∫ ∞
0

e−t(xi+xj)dt

=

∫ ∞
0

m∑
i,j

cicjxixje
−t(xi+xj)dt

=

∫ ∞
0

(
m∑
i

cixie
−txi

) m∑
j

cjxje
−txj

 dt

=

∫ ∞
0

(
m∑
i

cixie
−txi

)2

dt ≥ 0

This therefore gives us that

Dtri(v, w) =

√∑
i

(vi − wi)2
vi + wi

which we name as Triangular Distance, is a proper metric such that (M1
+(A), Dtri) is a

metric space which is isometrically embeddable in Hilbert space.

5.5. Spaces with Cosine Distance
The term “Cosine” distance does not have a unique meaning in the metric space liter-
ature and so requires an explanation.

It has long been known that, for two values v, w in Rn, then the function

SCos(v, w) =
v · w
‖v‖‖w‖

gives a convenient estimate of their dimensional correlation. One advantage of this is
that it is cheap to calculate, especially when the space is sparse such as applications
in information retrieval. This function calculates the cosine of the angle between the
vectors, and is best referred to as the Cosine Similarity Coefficient.

As it is bounded in [0, 1], the function f(v, w) = 1 − SCos(v, w) gives a bounded di-
vergence coefficient; however this function is not a proper metric, as it lacks triangle
inequality. A function which gives the same rank order and is also a proper metric can
be simply achieved by converting this value into the angle between two vectors, which
can be caused to range within [0, 1] by dCos(v, w) = cos−1(SCos(v, w))/π. In the metric
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space literature, this function is sometimes referred to as Cosine Distance [Figueroa
et al. 2007; Connor and Moss 2012].

This function is a proper metric, but is not isometrically embeddable in Hilbert
space. However, there exists another rank-equivalent function based on the Cosine
similarity:

d̃Cos(v, w) =
√

1− SCos(v, w)

In fact, since ‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2v · w, the distance d̃Cos(v, w) is equivalent to
the Euclidean distance computed on the normalized vectors v/‖v‖ and w/‖w‖:

d̃Cos(v, w) = d̃Cos

(
v

‖v‖
,
w

‖w‖

)
=

1√
2

∥∥∥∥ v

‖v‖
− w

‖w‖

∥∥∥∥
and is therefore isometrically 4-embeddable in three dimensional Euclidean space, and
hence in a Hilbert space.

5.6. High-Dimensional Euclidean Space
For completeness we reconsider n-dimensional Euclidean space for any n in the context
of Hilbert embedding. From Lemmata 5.4 and 5.6 it is sufficient to show that the
function K(v, w) =

∑
i(vi − wi)2 is a conditionally negative semi-definite semi-metric,

which is straightforward to demonstrate using a similar proof to that used in Section
5.4.

5.7. Non-Embeddable Spaces
To complete the picture, it is worth mentioning that not all metric spaces are 4-
embeddable in `32; it is therefore necessary to make a proper assessment of the space
in question before using Hilbert Exclusion.

Among commonly used proper metrics in the domain of metric search are Manhattan
(`1), Chebyshev (`∞), Hamming and Levenshtein distances. We briefly show that none
of these has the four-point property.

Figure 7 shows, on the left, a square ABCD in the 2D Cartesian plane and, on the
right, the `1 distances between the vertices of the square. Since `1(A,C) = `1(A,B) +
`1(B,C), for any isometric embedding of A, B, C in `32 the three points are collinear.
However, this is also true for A, D and C, and the distances are the same. Therefore,
the four pointsA,B, C,D cannot be isometrically embedded in `32, as this would require
that `1(B,D) = 0.

Similarly in Figure 8, `∞(A,C) = `∞(A,B)+`∞(B,C) and so the points are collinear
for any isometric embedding in `32; again, D shares the same distances (`∞(A,C) =
`∞(A,D) + `∞(D,C)), and so a four-point embedding again cannot be achieved as this
would require `∞(B,D) = 0.

To show that Hamming distance does not have the four-point property, it can simply
be noted that the same distance table as that in Figure 7 is generated by the values
A = 00, B = 10, C = 11, D = 01. In fact this counterexample gives the same distances
also for Levenshtein distance, which therefore also can be seen to not have the four-
point property.

5.8. The Four-point Property and Discriminability
In [Blumenthal 1953] it is shown that if (X, d) is a metric space then (X, dα), with
0 ≤ α ≤ 1/2, is isometrically 4-embeddable in `32. It is therefore true that, for any
proper metric, a new metric with the four-point property can be formed by taking its
square root, and thus used in a metric search structure with Hilbert Exclusion.

However for practical purposes this is unlikely to be useful. One of the most impor-
tant efficiency issues with metric search is the discriminability of the space. Whenever
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Fig. 7: Showing that `1 does not have the four-point property. Let A, B, C, D be the
vertices of a square in `21. On the right we show the `1 distances between the points.
Any isometric embedding in `32 maps A,B, C to collinear points, meaning that the point
D cannot be embedded whilst preserving the distances.
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Fig. 8: The `∞ distance also does not have the four-point property. On the left, we
plot four points in `2∞ which are not embeddable `32. On the right we report the `∞
distances between the points. Once again, any isometric embedding must map A,B,C
to collinear points in `32 making D impossible to embed.

any kind of exclusion mechanism is applied during a search, if the search radius is
greater than zero, there is always a finite probability of no data being excluded — the
lower the discriminability of the space, the higher the probability of no exclusion being
made. The quantification of this effect is not yet well understood in detail.

The notion of Intrinsic Dimensionality (IDIM, [Chávez et al. 2001]) is known to give
a reasonable estimate of (in)discriminability. IDIM is defined over a sample of dis-
tances calculated over randomly selected points from within the space, based on the
mean µ and standard deviation σ of these distances, as µ2

2σ2 .
Raising a metric to a small power will cause a significant increase in its IDIM. As

any such transform is monotonic increasing and convex, the standard deviation will de-
crease relative to the median, and threshold distances will increase in relative terms.
The advantages of using Hilbert Exclusion are thus likely to be outweighed by these
factors.
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6. ANALYSIS
As Hilbert Exclusion is strictly weaker than Hyperbolic Exclusion, the performance
of any partition-based indexing mechanism would always be expected to be superior.
The distance between the pivot points is required as well as the distance between
each pivot and the query, however this may always be calculated during the building
of any indexing structure and adds nothing to the cost of a query. Query evaluation
cost is totally dominated by the number of dynamic distance calculations required and
the use of memory where the objects are large; the minor increase in arithmetic cost,
and the extra space required to store the distance between pivots, would not normally
make a significant difference to the query cost.

The many different index mechanisms reported show that performance is highly de-
pendent on many factors, not least the cost of a distance calculation, the size of the
objects, and other factors including the intrinsic dimensionality and the distribution
of the data within the space. Furthermore most of the more sophisticated mechanisms
use a mixture of hyperplane and cover radius exclusion; it may be that enhanced per-
formance of hyperplane exclusion could make a significant difference to the choice of
index. It is not therefore possible to analyse a simple “performance improvement” in
general terms.

We therefore give analysis of the improved exclusion condition as follows.

(1) Exclusion power: for a given finite space, we randomly select pairs of pivot points
that partition a space into two halves. The exclusion power of each mechanism can
then be measured as the probability of a randomly-selected query being able to
avoid searching either half of the space based only on its distance from the two
points. This is always greater for Hilbert Exclusion than for Hyperbolic Exclusion;
in Section 6.2 we give figures for various spaces.

(2) Improvement: for a given metric space, simple data structures relying primarily
on hyperplane partitioning are built, namely a generalised hyperplane tree and
a monotonic hyperplane tree. The same index structures can be used with either
Hilbert or Hyperbolic exclusion; improvement is measured as a simple multiplica-
tive factor between the two. We give results in Section 6.3.

(3) Real-world data: The SISAP forum5 publishes a number of large data sets drawn
from real world contexts which are commonly used as benchmarks for different in-
dexing mechanisms. Results over these have been reported for many different in-
dexing mechanisms. We take the best of these mechanisms, which uses both radius
and hyperplane exclusion, and compare it using Hyperbolic and Hilbert exclusion
mechanisms. Results for this are given in Section 6.4.

All of our measurements are expressed in terms of the number of distances calcu-
lated, and we do not give any measured execution times. While it is often the case that
counting only the number of distances is not a good measure of overall efficiency of
an indexing mechanism, as we are only measuring a comparison of exclusion mecha-
nisms, the number of distances is the more important outcome. In fact our measured
times for the fairly simple experiments we perform are approximately proportional, as
the search structures are built over relatively small data sets which fit wholly within
main memory and the cost of distance calculations is dominant.

5www.sisap.org
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6.1. Experimental Method
Any exclusion mechanism will perform better as either the dimensionality of the space,
or the threshold of the search, becomes smaller. To give a general overview of the
tradeoffs, we perform all tests over a variety of spaces and thresholds.

In all cases, we generated pseudo-random data sets of one million elements within
the unit hypercube, uniformly distributed within each dimension, within Rd for d ∈
{6, 8, 10, 12, 14}. In the results presented we name the spaces used based on the metric
and the number of Cartesian dimensions, eg euc 10 for Euclidean distance over R10,
jsd 12 for Jensen-Shannon distance6 over R12 etc.

Search thresholds were derived by experiment, for each space, as those which would
return around n results per million data, for n ∈ {1, 2, 4, 8, 16, 32}.

For each space we also calculated the Intrinsic Dimensionality (IDIM, [Chávez et al.
2001]), generally believed to give a reasonably good estimate of the tractability of a
space to metric indexing techniques. A common observation is that spaces with an
IDIM of greater than around 6 are challenging, and those with an IDIM of greater
than about 10 are usually intractable. IDIM is defined over a sample of distances cal-
culated over randomly selected points from within the space, based on the mean µ and
standard deviation σ of these distances, as µ2

2σ2 .
Table I in Appendix B gives values for IDIM and thresholds calculated for each

space. Given these values, all experimental results are obtainable through repetition
of the experiments described. All results are independent of the computer upon which
they are performed, and all figures presented represent mean values where experi-
ments were repeated until the standard error of the mean was less than 1% of the
value given.

6.2. Exclusion Power
Figures 9, 10 and 11 illustrate the exclusion power test. Each figure shows the same
set of 500 randomly generated points in a 10-dimensional Euclidean space. A futher
two points are also generated to act as pivots.

In Figures 9 and 10, the distance between the pivot points is measured as d; an em-
bedded 2D plane is then constructed with these points at (0,−1/2d) and (0, 1/2d) re-
spectively. Each point in the generated set is then measured against these two points,
and plotted in the upper half of the plane according to these distances. It can be seen
that the same points are plotted in both figures. Note that the relative distances within
the plot are of no significance; each point represents a different embedding function.
However the position of each point within the space is individually significant with
respect to the pivot points.

A query radius is chosen to return around one point per million from a large set.
Figure 9 highlights those points which satisfy the Hyperbolic Exclusion condition, and
Figure 10 highlights those which satisfy Hilbert Exclusion. As well as noting that the
number is substantially greater (201 against 75 in this example), it is instructive to
note the shape of the exclusion zones within the two figures; Figure 9 clearly shows the
shape of the hyperbola which demarcates the zone, whereas Figure 10 clearly shows
parallel lines to either side of the central axis.

To give a reference diagram for single pivot-based exclusion, Figure 11 gives the
same plot but highlights those which are more than the same query threshold from the
median distance to the left-hand pivot point, which are those that could be excluded
according to radius-based exclusion from this point alone; there are 139 of these in this
case.

6for euc and tri, each point is normalised so that
∑

i vi = 1
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Fig. 9: Hyperbolic Exclusion. Two points are chosen at random from a finite space and
placed symmetrically on the X axis, either side of the origin, separated by the distance
between them in the original space. The remaining points are plotted in the upper
half of the space according to their distance from these two points. Relative distances
among these points are not significant as each point represents a different embedding
function. Those coloured solidly are those which, were they queries, would allow the
semispace on the opposing side to be excluded from a search.

Fig. 10: Hilbert Exclusion. The same plot as in Fig 9; the solidly coloured points repre-
sent queries that allow the opposing semispace to be excluded using Hilbert Exclusion.
These are now all points at least the threshold distance from the separating hyper-
plane, which includes many more queries for the same threshold.
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Fig. 11: Pivot Exclusion. The same plot as Figs 9 and 10, but now the left-hand point on
the X axis is used to exclude queries based on distance from that alone. Semispaces are
defined according to the median distance from this point, and solidly coloured points
indicate those whose distance from the pivot point is more than the query threshold
away from this median.

In all spaces that we have measured, the single-pivot method has more exclusion
power than Hyperbolic exclusion, but less power than Hilbert Exclusion. In metric in-
dexing things are not this simple, as in particular hyperplane separation is normally
used to effect in conjunction with cover radius exclusion. The greater exclusion poten-
tial of Hilbert Exclusion requires two distance calculations, against a single calculation
for pivot-based exclusion; however many indexes have ways of amortising this extra
cost. Finally, plane partitioning is very effective when the space is amenable to geomet-
ric separation, as it tends to cluster subsets which are relatively closer to each other,
whereas ball partitioning tends to be less effective in this respect.

In all there is a hint that, when applicable, the new condition appears to enjoy the
best of all worlds in this respect; at least it may make a significant difference to the
choice of mechanism for a given data set, and may possibly inspire new mechanisms
to be developed.

6.2.1. Results. Table II in Appendix C gives outcomes of the exclusion power test for
the three given Hilbert-embeddable metrics over spaces of various dimensions, using
various query thresholds. These results are graphically summarised in Figure 12 for
Euclidean spaces; the other two metrics give very similar patterns. The left-hand fig-
ure shows the exclusion percentage obtained at various dimensions and thresholds; it
can be seen that Hilbert Exclusion performs much better than Hyperbolic Exclusion,
and is much more tolerant to increases in both dimensionality and query threshold;
that is, it performs relatively better as the space becomes less tractable.

The right hand graphs illustrates this in terms of improvement of Hilbert over Hy-
perbolic exclusion, which again can be seen to increase sharply as the space becomes
less tractable.
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Fig. 12: Exclusion Power tests: Each figure shows five different dimensionalities, and
three different search thresholds, for Euclidean spaces. Jensen-Shannon and Triangu-
lar spaces gives similar results. Left figure is percentage exclusion, right is relative
improvement of Hilbert over Hyperbolic.

6.3. Improvement
To give a more practical measurement of performance improvement, the two exclusion
mechanisms have also been tested over metric indexes built over actual data sets. The
indexes used are the general hyperplane tree (GHT, [Uhlmann 1991]) and the mono-
tonic hyperplane tree (MHT, [Noltemeier et al. 1992])7, which are in a sense the most
“pure” (and certainly the simplest) hyperplane indexing structures. In these experi-
ments, for each data set used the same data structure is created, the only difference is
in the exclusion mechanism used.

It should be noted here that the notions of “bisector” and “hyperplane” tree are
conceptually different; although they share the same construction algorithm, bisector
trees use a cover radius for pivot-based exclusion, and hyperplane trees use, normally,
hyperbolic exclusion. In our experiments we use both cover radius and hyperplane ex-
clusion mechanisms, as would be normal in practice, and compare the use of hyperbolic
exclusion with Hilbert exclusion.

6.3.1. Results. Table III in Appendix C shows, for various metrics and dimensionali-
ties, the cost of indexing two hyperplane-based metric index structures with the differ-
ent exclusion strategies. Figure 13 shows some of the results in graphical form.

It can be seen that, for all spaces, Hilbert Exclusion always gives better perfor-
mance than Hyperbolic Exclusion; this is expected, as the exclusion condition is strictly
weaker. Table III shows that, under Hyperbolic Exclusion, the MHT always gives
marginally improved performance over the GHT; again, this is already known and
understood. It can also be seen that the GHT under Hilbert Exclusion gives equal or
better performance than the MHT under Hyperbolic Exclusion. Interestingly however,
the improvement given by using Hilbert Exclusion with the MHT is dramatically bet-
ter than the improvement given over the GHT, for which we do not currently have a
reason.

Another interesting observation is shown on the right of Figure 13, which gives the
ratio of the number of distances calculated by the MHT for the two exclusion mech-
anisms; it can be seen that, for all search thresholds, this reaches a maximum at
around 10 dimensions and then decreases again. This can be explained by the fact

7Originally named the “Monotonous Bisector* Tree”; the term “monotonic” is generally agreed to be a better
description of the concept
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Fig. 13: The left hand graph shows absolute performance data for the MHT, at various
dimensionalities and thresholds, for the two exclusion mechanisms. The right hand
graph shows the same results interpreted as an improvement ratio, and also includes
data from the GHT. In the left hand graph, lines of the same pattern represent the
same data, and the same index structures, only the query exclusion mechanism is
different.

that, for very tractable spaces, both mechanisms function very well; there is not there-
fore a great improvement. For intractable spaces, neither mechanism can do well and
so again the relative improvement becomes less. The observation is in keeping with
the left hand diagram shown in Figure 12, where it be seen that the gap in exclusion
power of the two mechanisms is greatest at around the same range of dimensions.

6.4. “Real-world” data
There are many different contexts for metric search, and no mechanism is generally
believed to be best for all purposes. The most competitive comparator at the time of
writing is the Distal Spatial Approximation Tree (DiSAT) [Chávez et al. 2016] which
has been shown to perform better than a large range of other mechanisms. The authors
write:

“Our data structure has no parameters to tune-up and a small memory foot-
print. In addition it can be constructed quickly. Our approach is among the
most competitive, those outperforming DiSAT achieve this at the expense of
larger memory usage or an impractical construction time.”

We can therefore take this mechanism as the state of the art in metric indexing, and
as it uses hyperplane partitioning we can test the effect of applying Hilbert Exclusion
against the Hyperbolic Exclusion with which it has been defined. In their publication,
the authors test the DiSAT very extensively and it is in almost all cases the best per-
forming index.

The SISAP forum8 publishes a number of large data sets drawn from real world
contexts which are commonly used as benchmarks for different indexing mechanisms,
and results for the DiSAT were given with respect to these. We have implemented
the DiSAT as described in [Chávez et al. 2016] and measured the same results over
Euclidean spaces; therefore we need only compare this structure with the two different
exclusion criteria.

8www.sisap.org
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Fig. 14: Comparing Hyperbolic and Hilbert Exclusion Conditions for the DiSAT. The
two graphs represent benchmark applications of the “state of the art” DiSAT index
over SISAP benchmark data sets, with significant improvements achieved through
changing only the exclusion condition.

The same experimental context was used: the SISAP “colors” and “nasa” data sets
are used to build instances of DiSATs. The “nasa” data set contains a set of 40,700
20-dimensional feature vectors, generated from images downloaded from NASA. The
“colors” set contains 112,682 feature vectors of dimension 112, representing color his-
tograms from an image database.

In each case ten percent of the data is used as queries over remaining 90 percent of
the set, at threshold values which return 0.01%, 0.1% and 1% of the data sets respec-
tively. Figure 14 shows the outcome of these experiments. It is clear that using Hilbert
exclusion greatly improves the performance.

6.5. Correctness
It is finally worth mentioning that during the course of the experiments described in
this paper, over one million queries have been executed over sets of at least one million
data using a number of different indexes, including those using both Hyperbolic and
Hilbert exclusion; all queries over the same sets, using different mechanisms, have
been checked against each other and in all cases the results were identical. While
we are confident about the correctness of the mathematical derivations given, it is
nonetheless comforting to have such experimental validation.

7. THE EFFECTS OF INCREASING DIMENSIONALITY
The results given have shown how the relative advantage of Hilbert Exclusion over
Hyperbolic Exclusion increases as the spaces become less tractable, that is as the in-
trinsic dimensionality increases.

A reason for this can be seen from studying the geometry of the two mechanisms in
the three dimensional embeddings. As the dimensionality increases, there are three
well-known effects: the mean distances between randomly sampled points increases;
the standard deviation of these distances decreases,and query thresholds greatly in-
crease. This last gives the greatest effect in terms of the tractability of indexing mech-
anisms, and is an effect of the relative ratio of the volume of the unit hypercube and
the unit hypersphere as dimensions increase. The volume of the unit hypersphere in
2k dimensions is πk

k! , which decreases very rapidly after three dimensions, whereas the
volume of the unit hypercube remains as 1, independent of the dimension.

ACM Transactions on Information Systems, Vol. V, No. N, Article XXXX, Publication date: XXXX 2016.



XXXX:23

As can be seen from Table I, in 6-dimensional Euclidean space the radius of a hyper-
sphere with a volume of 10−6 is 0.076; in 14-dimensional Euclidean space it is 0.386.
This has the effect of not only making the hyperbola wide, but also causing it to veer
sharply away from the central hyperplane.

Figure 15 illustrates this effect by illustrating the siutation in both 6 and 14 dimen-
sions for a small set of 500 randomly generated points in the unit hypercube.

8. CONCLUSIONS AND FURTHER WORK
We have shown that many common metric spaces have a further, stronger, prop-
erty: namely, as well as the ability to isometrically embed any three points in two-
dimensional Euclidean space, they also have the ability to isometrically embed any
four points in three-dimensional Euclidean space. We have shown how the stronger
geometric guarantee allows more effective metric indexing, and also that any metric
space which is isometrically embeddable in Hilbert space has the stronger property.
Such spaces include those most commonly used, including spaces of any dimension
governed by Euclidean, Jensen-Shannon, Triangular or Cosine distance.

We have shown that, for such spaces, the most popular, state-of-the-art indexing
mechanisms have significantly better performance, and that the improvement in-
creases as the dimensionality of the space increases, which is an important result in
this field.

However we believe that the so-called four point property will turn out to also be
of value in other areas of similarity search. Although not yet fully investigated, we
have included here the observation that our Hilbert Exclusion has better properties
than normal pivot-based exclusion over a single object, and while Hilbert exclusion
has the disadvantage of requiring two reference points, it has been seen (for example
in monotonic bisector trees) how this extra cost can be amortised by reusing the pivot
points. We have also made some early but promising observations that the four-point
property can be used to effect beyond indexing structures, for example in the use of
locality-sensitive hashing and permutation ordering, which we are currently investi-
gating further.

In essence, almost the entire literature of metric search is based upon the property of
3-embeddability in two dimensional space; almost every derived result in the whole do-
main can be usefully re-examined in terms of the stronger property of 4-embeddability
in three dimensional space.

Finally, it is also the case that any Hilbert space with the four-point property in fact
has the ability to embed any n points with (n−1)-dimensional Euclidean space; we are
currently trying to understand if this property gives rise to further uses within metric
indexes.
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9. APPENDICES
A. ALGEBRAIC PROOF OF WEAKNESS
Here we prove that the Hilbert Exclusion Condition is weaker than the Hyperbolic
Exclusion Condition. The intuition behind this is clear from the geometric derivation
but the algebraic proof is straightforward.

We require to prove that
d(q, p1)

2 − d(q, p2)2

2 d(p1, p2)
> t

is a weaker condition than
d(q, p1)− d(q, p2)

2
> t

for which it is sufficient to show that
d(q, p1)

2 − d(q, p2)2

2 d(p1, p2)
≥ d(q, p1)− d(q, p2)

2

Using the triangle inequality property on q, p1 and p2, this requirement can be stated
as

a2 − b2

2 c
≥ a− b

2
, c ≤ a+ b

and so
(a+ b)(a− b)

2 c
≥ a− b

2

which is clear when c ≤ a+ b.
This proof also neatly demonstrates the fact that the conditions are equivalent only

if the query point is colinear with the two pivots p1 and p2; in all other cases, the
Hilbert Exclusion Condition is strictly weaker.

B. IDIMS AND QUERY THRESHOLDS

Table I: Intrinsic Dimensionality and Thresholds for Experimental Spaces

Space IDIM t1 t2 t4 t8 t16 t32

euc 6 7.698 0.076 0.085 0.095 0.107 0.120 0.135
euc 8 10.40 0.149 0.162 0.177 0.193 0.211 0.230
euc 10 13.36 0.228 0.245 0.262 0.281 0.301 0.323
euc 12 16.23 0.308 0.327 0.346 0.367 0.388 0.412
euc 14 19.13 0.386 0.406 0.426 0.448 0.471 0.495
jsd 6 5.162 0.022 0.026 0.030 0.035 0.040 0.046
jsd 8 7.273 0.045 0.051 0.057 0.064 0.071 0.078
jsd 10 9.486 0.067 0.073 0.079 0.086 0.094 0.102
jsd 12 11.51 0.084 0.091 0.099 0.107 0.114 0.122
jsd 14 13.69 0.103 0.111 0.118 0.126 0.133 0.141
tri 6 5.754 0.025 0.030 0.035 0.041 0.047 0.055
tri 8 8.181 0.053 0.060 0.068 0.075 0.083 0.091
tri 10 10.46 0.078 0.086 0.093 0.101 0.110 0.119
tri 12 13.02 0.098 0.106 0.116 0.125 0.133 0.142
tri 14 15.60 0.120 0.129 0.137 0.146 0.155 0.164
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C. EXCLUSION POWER RESULTS

Table II: Exclusion Power results for various metrics, spaces and thresholds.

Hyperbolic Hilbert Pivot
Data Set IDIM t1 t4 t16 t1 t4 t16 t1 t4 t16

euc 6 7.64 59.8 50.8 40.7 80.5 75.6 69.4 74.4 68.1 60.4
euc 8 10.5 31.4 23.3 15.8 62.1 55.6 48.3 51.8 44.2 36.0

euc 10 13.3 12.2 7.6 4.3 44.3 37.7 30.8 31.9 25.1 18.7
euc 12 16.1 3.8 2.0 0.9 29.5 23.8 18.4 17.4 12.7 8.6
euc 14 19.0 0.9 0.4 0.2 18.5 14.2 10.3 8.8 6.0 3.8

jsd 6 5.15 66.1 54.9 42.9 83.8 77.8 70.7 82.4 75.8 68.0
jsd 8 7.26 32.4 21.7 13.5 62.8 53.9 45.2 58.5 48.8 39.3
jsd 10 9.39 11.4 6.3 3.0 42.6 34.4 26.4 36.2 27.7 19.8
jsd 12 11.4 3.5 1.4 0.5 27.4 19.6 13.5 20.8 13.6 8.5
jsd 14 13.7 0.6 0.2 0.1 14.4 9.5 6.0 9.3 5.4 3.0

tri 6 5.76 63.7 51.9 39.7 82.3 75.8 68.2 80.4 73.1 64.6
tri 8 8.25 27.9 17.6 10.3 59.5 50.1 41.0 54.2 43.9 34.2

tri 10 10.6 8.1 4.1 1.8 38.0 29.7 21.8 31.0 22.8 15.4
tri 12 13.0 1.9 0.6 0.2 22.7 15.3 9.9 16.2 9.8 5.7
tri 14 15.5 0.3 0.1 0.0 10.8 6.6 3.8 6.2 3.3 1.6

Table III: Indexing Costs for General Hyperplane and Monotonic Hyperplane Tree:
mean number of distance calculations per query as percentage of data size (n = 106).

Hyperbolic Hilbert
GHT MHT GHT MHT

Data Set t1 t4 t16 t1 t4 t16 t1 t4 t16 t1 t4 t16

euc 6 0.06 0.11 0.20 0.05 0.08 0.15 0.05 0.08 0.14 0.03 0.05 0.10
euc 8 0.30 0.50 0.84 0.25 0.41 0.68 0.18 0.31 0.55 0.13 0.22 0.40

euc 10 1.19 1.86 2.91 1.00 1.54 2.33 0.68 1.12 1.87 0.48 0.80 1.35
euc 12 3.87 5.60 7.97 3.19 4.48 6.25 2.25 3.53 5.48 1.62 2.54 3.97
euc 14 9.92 13.18 17.26 7.67 10.06 13.17 6.25 9.09 13.02 4.47 6.57 9.53

tri 6 0.05 0.11 0.21 0.04 0.08 0.16 0.04 0.07 0.15 0.02 0.05 0.11
tri 8 0.40 0.78 1.41 0.32 0.62 1.10 0.23 0.48 0.92 0.17 0.35 0.69

tri 10 1.95 3.29 5.37 1.66 2.73 4.36 1.11 2.05 3.71 0.84 1.57 2.87
tri 12 6.10 9.84 14.49 5.25 8.24 12.04 3.74 6.86 11.27 2.92 5.43 9.04
tri 14 16.63 23.11 30.57 13.95 19.45 26.06 12.02 18.57 26.52 9.68 15.24 22.25

jsd 6 0.05 0.10 0.20 0.04 0.08 0.15 0.04 0.07 0.15 0.02 0.05 0.11
jsd 8 0.32 0.63 1.15 0.26 0.51 0.92 0.20 0.40 0.78 0.14 0.29 0.58
jsd 10 1.50 2.58 4.29 1.35 2.22 3.61 0.90 1.64 2.99 0.68 1.25 2.31
jsd 12 4.67 7.68 11.47 4.17 6.62 9.76 2.84 5.27 8.71 2.22 4.15 6.97
jsd 14 12.4 17.67 23.9 10.77 15.17 20.57 8.62 13.62 19.97 6.94 11.13 16.69
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