On the general properties of steady gravitational thermal flows of liquid metals in variable cross-section containers

Lappa, Marcello and Ferialdi, Hermes (2017) On the general properties of steady gravitational thermal flows of liquid metals in variable cross-section containers. Review of Applied Physics, 5 (1). pp. 1-10. ISSN 2327-1612 (https://doi.org/10.14355/rap.2017.05.001)

[thumbnail of Lappa-Ferialdi-RAP-2016-steady-gravitational-thermal-flows-of-liquid-metals]
Preview
Text. Filename: Lappa_Ferialdi_RAP_2016_steady_gravitational_thermal_flows_of_liquid_metals.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (938kB)| Preview

Abstract

Thermogravitational flows of liquid metals in open or closed ducts and containers play a relevant role in a variety of applications in mechanical, materials and nuclear engineering. Such flows are known to be very sensitive to the effective shape of the container used to host the fluid and its thermal boundary conditions. For the case of temperature gradients having the main component directed along the horizontal direction, related convective phenomena fall under the general heading of “Hadley flow”. Here we introduce a general framework for the determination of the properties of these flows in the case of domains having converging or diverging top and bottom walls. The framework is built via a hybrid approach in which typical techniques of CFD are used in synergy with analytical solutions of the energy equation. The proper use of initial and boundary conditions results in algorithm convergence acceleration. The role played by the top and bottom wall inclination with respect to the horizontal is assessed through parametric investigation.