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The coupled lot-sizing and cutting-stock problem has been a challenging and significant problem for

industry, and has therefore received sustained research attention. The quality of the solution is a

major determinant of cost performance in related production and inventory management systems,

and therefore there is intense pressure to develop effective practical solutions. In the literature, a

number of heuristics have been proposed for solving the problem. However, the heuristics are limited

in obtaining high solution qualities. This paper proposes a new progressive selection algorithm that

hybridizes heuristic search and extended reformulation into a single framework. The method has

the advantage of generating a strong bound using the extended reformulation, which can provide

good guidelines on partitioning and sampling in the heuristic search procedure so as to ensure an

efficient solution process. We also analyze per-item and per-period Dantzig–Wolfe decompositions

of the problem and present theoretical comparisons. The master problem of the per-period Dantzig–

Wolfe decomposition is often degenerate, which results in a tailing-off effect for column generation.

We apply a hybridization of Lagrangian relaxation and stabilization techniques to improve the

convergence. The discussion is followed by extensive computational tests, where we also perform

detailed statistical analyses on various parameters. Comparisons with other methods indicate that

our approach is computationally tractable and is able to obtain improved results.

Key words: Integer programming; Cutting-stock; Lot-sizing; Heuristics; Column generation;

Dantzig–Wolfe decomposition.

1. Introduction

Lot-sizing and cutting-stock are two fundamental problems that often arise in the production

processes of many industries including furniture, paper, packaging, aluminum window frame, fiber
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glass, and steel manufacturing. The lot-sizing problem determines production quantities for a

number of items over a finite horizon, taking into account the fundamental trade-off between setup

and inventory-holding costs. On the other hand, the cutting-stock problem determines patterns

of cutting raw materials in stock to produce final products or sub-assemblies for assembling final

products, where trim loss costs are often associated with these decisions. In the literature, these

two problems are often addressed independently. However, in the current global manufacturing

environment, manufacturers are under intense pressure to meet customers’ demand in time with

the lowest costs and hence integrating such problems for more “globally optimal” solutions gives a

company a competitive edge. As such, optimizing production and cutting decisions simultaneously

in a coupled lot-sizing and cutting-stock problem offers significant savings potential by capturing

trade-offs among trim loss, inventory-holding, and setup costs.

Since the 1970’s, researchers and practitioners experimented with integrating lot-sizing decisions

into the cutting-stock problems by considering setup costs for pattern changes in the cutting process.

The work of [29] proposed a heuristic procedure for scheduling cutting operations with an objective

to minimize the total costs of setups and trim loss in the paper industry, and [30] presented a

mathematical formulation for a one-dimensional cutting-stock problem with setup costs incurred

for pattern changes. The heuristic procedure of [29] was further developed by [14], and [31] proposed

some approaches for solving the one-dimensional roll trim problem with setup costs. The Linear

Programming (LP)-based approach of [12] considered a two-stage cutting-stock problem involving a

number of setups, and [35] evaluated four different approaches for solving the cutting-stock problem

with setup costs for pattern changes. The generalized cutting-stock problem with setup costs for

pattern changes was also more recently investigated by [20], and the minimization of the number

of different patterns has also been used as an objective by [46].

The coupled cutting-stock and production planning problem has also been studied in the lit-

erature. [42] studied the process of importing tree trunks and cutting them into assortments and

boards for various markets, and [34] proposed a two-step procedure for a coupled lot-sizing and

cutting-stock problem in the paper industry. The coupled problem has been studied with different

approaches in various industry settings, such as in the copper manufacturing industry (see, e.g.,

[32]), cutting of steel plates (see, e.g., [38]), off-road truck companies (see, e.g., [39]) and produc-

tion of gear belts (see, e.g., [8]). Further work in this area can also be found in [37, 41, 44] and

[45]. Finally, we note [10] and [22] as general references on heuristics and meta-heuristics for the

interested reader, since these methods provide the backbone of many of the approaches discussed,

as well as part of the approach we propose in this paper.

2



Early research (e.g., [8], [39], and [41]) is valuable for understanding underlying structures

of the coupled problem. However, these studies were limited on a number of aspects, such as

disregarding capacity constraints, inventory-holding costs, and the assembly process of final items

in formulating these problems, and using a two-phase procedure in solving them. Some of these

concerns have been partly addressed in the more recent literature. [26] analyzed the trade-off

among trim loss, inventory-holding and setup costs that arises when solving the cutting-stock

problem by taking into account production planning for various periods. The authors formulated a

mathematical model and a solution approach for the coupled lot-sizing and cutting-stock problem.

[27] proposed a Lagrangian relaxation-based heuristic for the coupled lot-sizing and cutting-stock

problem. However, the difficulty faced by this heuristic is that the resulting subproblems are NP-

hard capacitated lot-sizing problems. [28] relax setups for the problem but include the storage

of parts in order to solve the problem more effectively. We also note the very recent work of [4]

proposing robust models for coupled lot-sizing and cutting-stock in the furniture industry.

The problem studied in this paper, the coupled Lot-Sizing and Cutting-Stock (LS-CS) problem,

is similar to the one analyzed by [27]. Its goal is to plan the production of a number of items over a

horizon of finite periods, while these items are produced by cutting rectangular sheets into standard

items with different sizes. These items are assembled to make a number of different final products

with external demand to be met on time. The objective of the problem is to find a minimum cost

production plan without violating capacity limitations, where the total cost includes setup cost,

inventory-holding cost, cutting cost, and raw material cost. The effective solution of this problem is

an important determinant of cost performance in related production and inventory control systems,

which include the well-known material requirements planning systems prevalent in manufacturing

practice. Research on finding effective models and solution methods thus has the potential to

provide tangible benefits in the form of lower total production-related costs for problems in this

class.

This paper proposes a progressive selection (PS) method which combines extended reformula-

tion with heuristics in order to leverage the strengths of both methods. The proposed PS approach

is designed to first generate an initial population of bounding solutions using extended reformu-

lation and heuristics. Then, the approach utilizes domain knowledge derived from these solutions

to iteratively generate and evaluate subproblems through a progressive selection strategy. These

subproblems have a number of integer variables fixed and therefore can be efficiently solved. The

goal of the PS approach is that, by solving these subproblems, objective values of the original

problem can be iteratively improved and eventually converge to a solution of good quality. The
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application of the PS method to the LS-CS problem shows that the method is able to obtain com-

petitive results while being computationally tractable. In addition, this paper proposes per-item

and per-period Dantzig–Wolfe decompositions to improve lower bounds for the LS-CS problem and

presents theoretical comparisons. The master problem of the per-period Dantzig–Wolfe decomposi-

tion is often degenerate, which results in a tailing-off effect for column generation. A hybridization

of Lagrangian relaxation and stabilization techniques is applied to improve the convergence.

The remainder of this paper is organized as follows. In Section 2, we present several mathemat-

ical formulations for the LS-CS problem. In Section 3, we discuss Dantzig–Wolfe decomposition

and column generation for the LS-CS problem. In Sections 4 and 5, we describe in detail the PS

method. Section 6 presents statistical analyses of the PS method for its application to the LS-

CS problem. Section 7 presents extensive computational test results and comparisons with other

approaches from the literature. Finally, we conclude with future directions in Section 8.

2. Alternative formulations for the LS-CS problem

This paper considers a problem that is similar to the one discussed in [27], with the additional

complexity of integrality constraints enforced on the number of plates. Another difference is the

capacity constraints: this paper refers to time availability whereas [27] refer to the amount of

material area that can be cut by a saw machine. These two factors are convertible if we know the

cutting speed for the saw machine. However, we decided to use time capacity due to the benefit

of allowing setup times in the capacity constraints as is the practice in the area. Furthermore,

we assume that setup time and costs are not dependent on the sequence, all initial inventories are

zero, all production costs are linear, all holding costs are time-invariant, lead times are zero, and

demands need to be satisfied on time (i.e., no backlogging allowed). The cutting pattern is assumed

to be rectangular, and no inventory of sub-assemblies or plates is considered. Before presenting

different formulations, we define our notation:

Sets:

T Number of periods in the planning horizon, indexed by q, t, f and `.
I Number of items (final products), indexed by i.
J Number of sub-items (sub-assemblies), indexed by j.
P Number of possible cutting patterns, indexed by p.
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Parameters:

uc Cost of a piece of plate.
rji Number of sub-items of type j needed to produce one unit of item i.
pcit Unit production cost of item i in period t.
scit Setup cost for producing item i in period t.
stit Setup time for producing item i in period t.
hci Inventory-holding cost for one unit of item i per period.
ajp Number of sub-items of type j made by cutting pattern p.
vit Unit production time of item i in period t.
dit Gross demand for item i in period t.
Ct Assembly capacity for producing final items in period t.
BMit A big number for each product i and period t.

Decision variables:

xit Number of units of item i produced in period t.
sit Inventory of item i at the end of period t.
zpt Number of plates used with cutting pattern p in period t.
yit Setup decision variables: yit = 1 if xit > 0, zero, otherwise.

We first present the most basic and intuitive problem formulation, i.e., the Lot-Sizing and

Cutting-Stock formulation (LSCS), as follows:

LSCS:

min
I∑
i=1

T∑
t=1

(pcit · xit + hci · sit + scit · yit) +
P∑
p=1

T∑
t=1

uc · zpt (1)

Subject to:

xit + si,t−1 − sit = dit ∀ i ∈ {1, ..., I}, t ∈ {1, ..., T} (2)
P∑
p=1

ajp · zpt ≥
I∑
i=1

rji · xit ∀ j ∈ {1, ..., J}, t ∈ {1, ..., T} (3)

I∑
i=1

vit · xit +
I∑
i=1

stit · yit ≤ Ct ∀ t ∈ {1, ..., T} (4)

xit ≤ BMit · yit ∀ i ∈ {1, ..., I}, t ∈ {1, ..., T} (5)

x, s, z ≥ 0, y ∈ {0, 1}I×T (6)

The objective function (1) minimizes the total cost over the planning horizon. Constraints (2)

ensure on-time demand satisfaction for all items (i.e., final products). Constraints (3) enforce that

the total number of sub-items (i.e., sub-assemblies) obtained by cutting are sufficient to satisfy the

production of final products constrained by the bill-of-material (BOM) relations. Constraints (4)

enforce big-bucket capacity restrictions for final products (i.e., multiple items sharing the same re-

source, each item taking up both variable processing time and setup time) and constraints (5) ensure
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that no production occurs for item i in period t unless a set up takes place (i.e., yit = 1), in which

case the amount of production is limited by a large value BMit = min{
∑
q∈{t,...,T} diq, (Ct−stit)/vit}.

Constraints (6) enforce the integrality and non-negativity requirements for various variables. Note

that in the paper by [27], where this model was introduced, the z variables were defined as contin-

uous. We keep the same definition of the problem. However, in our computational experiments in

Section 6, we also consider the version of this problem imposing integrality constraints on these z

variables.

The time required for proving the optimality of a given solution is often prohibitive for this

model, because it provides only a weak LP relaxation, causing a large integrality gap and also poor

guidance in the search for good feasible solutions in the branch-and-bound method. Therefore, we

propose a new formulation that is able to provide better lower bounds. This formulation is similar

to those proposed for the lot-sizing problems by [19] and [47], which provide integer solutions for

the uncapacitated single-item problem, and hence we use the same terminology. This formulation

is called the Shortest Path and Cutting-Stock formulation (SPCS). We introduce a new set of

variables, witq, which represent the percentage of production of item i in period t used to satisfy

the accumulated demand for item i from period t to period q. In SPCS, the relationships among

variables witq, xit and sit are established as follows:

xit =
T∑
q=t

T∑
`=q

diq · wit` ∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}

sit =
t∑

q=1

T∑
f=t+1

T∑
`=f

dif · wiq` ∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}

Using these relationships, we can substitute x and s with w into constraints (1)-(6). The resulting

SPCS formulation is given as follows:

SPCS:

min
I∑
i=1

T∑
t=1

T∑
q=t

T∑
`=q

pcit · diq · wit` +
I∑
i=1

T∑
t=1

T∑
q=t

{ q∑
`=t

hci · (`− t) · di`

}
· witq +

I∑
i=1

T∑
t=1

scit · yit

+
P∑
p=1

T∑
t=1

uc · zpt (7)
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Subject to:
T∑
q=1

wi1q = 1 ∀ i ∈ {1, ..., I} (8)

t−1∑
q=1

wiq(t−1) =
T∑
q=t

witq ∀ i ∈ {1, ..., I}, t ∈ {2, ..., T} (9)

P∑
p=1

ajp · zpt ≥
I∑
i=1

T∑
q=t

T∑
`=q

rji · diq · wit` ∀ j ∈ {1, ..., J}, t ∈ {1, ..., T} (10)

I∑
i=1

T∑
q=t

T∑
`=q

vit · diq · wit` +
I∑
i=1

stit · yit ≤ Ct ∀ t ∈ {1, ..., T} (11)

T∑
q=t

witq ≤ yit ∀ i ∈ {1, ..., I}, t ∈ {1, ..., T} (12)

w, z ≥ 0, y ∈ {0, 1}I×T (13)

In this formulation, constraints (8) and (9) ensure demand satisfaction for all items over the

entire horizon and correspond to the flow conservation for each node in the network. Constraints

(10) ensure that the total number of sub-assemblies are sufficient to satisfy the production of final

products. Constraints (11) enforce capacity limits and constraints (12) are setup forcing constraints.

Constraints (13) enforce the integrality and non-negativity requirements for various variables.

3. Dantzig–Wolfe decomposition and column generation

In the coupled lot-sizing and cutting-stock literature, we are only aware that [39] proposed a column

generation approach for the coupled problem. However, the problem presented is different from the

one studied in this paper, since it does not consider capacity constraints. Moreover, their framework

uses a two-phase solution procedure and it does not solve the coupled lot-sizing and cutting-stock

problem considering in conjunction capacity constraints, setup, storage and production costs. Due

to these differences, the column generation approach of [39] is not directly applicable for the LS-CS

problem studied in this paper, and this is our main motivation to propose two new Dantzig–Wolfe

decomposition and column generation approaches, i.e., per-item and per-period decompositions.

For the per-item decomposition, the problem is decomposed into single-item uncapacitated lot-

sizing subproblems containing the demand (2), setup forcing (5) and integrality (6) constraints for

the specific item, while the BOM (3) and capacity (4) constraints are the linking constraints in the

master problem. For the per-period decomposition, the problem is decomposed into single-period

subproblems containing the BOM (3), capacity (4), setup forcing (5) and integrality (6) constraints

for the specific period, while the demand constraints (2) are the linking constraints in the master
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problem. An overview of lower bounds yielded by these decompositions is given in Table 1, where

the notation indicates which formulation and decomposition have been considered, e.g., D̂LSCS1
means the lower bound obtained by the per-item decomposition of the LSCS formulation. We also

define the notation R̂ to indicate LP relaxation.

Table 1: Summary of lower bounds yielded by the Dantzig–Wolfe decompositions
No decomposition Decomposition 1 Decomposition 2

(per-item) (per-period)
The LSCS formulation R̂LSCS D̂LSCS1 D̂LSCS2
The SPCS formulation R̂SPCS D̂SPCS1 D̂SPCS2

We next describe the per-period Dantzig–Wolfe decomposition of SPCS and present the other

decompositions in the Online Supplement. We define Kt as the set of all possible setup schedules

for period t, Kt = {(y1t, . . . , yIt)|yit ∈ {0, 1},∀ i ∈ {1, ..., I}}. For a given possible setup schedule

k ∈ Kt, we define the following parameters: ykit is the setup indicator for item i in period t; wkitq is

the percentage of production of item i in period t used to satisfy the accumulated demand for item

i from period t to period q; and zkpt is the number of plates that are cut with pattern p in period t.

In addition, πtk is the new variable and is defined as the fraction of production made using setup

schedule k in period t; γit is the dual variable related with the demand-satisfaction constraints; and

δt is the dual variable for the convexity constraints. The SPCS formulation can be separated into

a master problem (MP-DSPCS2) and T pricing problems (SP-DSPCS2) as follows:

min
I∑
i=1

T∑
t=1

T∑
q=t

T∑
`=q

∑
k∈Kt

pcit · diq · wkit` · πtk +
I∑
i=1

T∑
t=1

T∑
q=t

∑
k∈Kt

{ q∑
`=t

hcit · (`− t) · di`

}
· wkitq · πtk

+
I∑
i=1

T∑
t=1

∑
k∈Kt

scit · ykit · πtk +
P∑
p=1

T∑
t=1

∑
k∈Kt

uc · zkpt · πtk

s.t.
T∑
q=1

∑
k∈K1

wki1q · π1k = 1, ∀ i ∈ {1, ..., I}

t−1∑
q=1

∑
k∈Kq

wkiq(t−1) · πqk =
T∑
q=t

∑
k∈Kt

wkitq · πtk, ∀ i ∈ {1, ..., I}, t ∈ {2, ..., T}∑
k∈Kt

πtk = 1, ∀ t ∈ {1, ..., T} (MP-DSPCS2)

πtk ≥ 0, ∀ t ∈ {1, ..., T}, k ∈ Kt
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min ζt =
I∑
i=1

T∑
q=t

T∑
`=q

pcit · diq · wit` +
I∑
i=1

T∑
q=t

{ q∑
`=t

hcit · (`− t) · di`

}
· witq +

I∑
i=1

scit · yit

+
P∑
p=1

uc · zpt −
I∑
i=1

T∑
q=t

γit · witq +
I∑
i=1

T−1∑
q=t

γi(q+1) · witq − δt

s.t.
I∑
i=1

T∑
q=t

T∑
`=q

vit · diq · wit` +
I∑
i=1

stit · yit ≤ Ct

P∑
p=1

ajp · zpt ≥
I∑
i=1

T∑
q=t

T∑
`=q

rji · diq · wit`, ∀ j ∈ {1, ..., J} (SP-DSPCS2)

T∑
q=t

witq ≤ yit, ∀ i ∈ {1, ..., I}

zpt, witq ≥ 0, yit ∈ {0, 1}, ∀ i ∈ {1, ..., I}, q ∈ {t, ..., T}, p ∈ {1, ..., P}

To achieve lower bounds, we suggest the use of column generation, which stems from the idea

that when a problem has significantly more variables (i.e., columns) than constraints (i.e., rows),

since the number of basic variables will be not more than the number of its constraints and hence

the majority of variables will end up being non-basic, one can identify these useful columns of

the basic solution, rather than including all columns in the problem. Column generation with

the Dantzig–Wolfe decomposition has been widely used for problems with complicating linking

constraints and also proven to be useful for the lot-sizing problem (see, e.g., [33] and [15]).

This approach consists of a restricted master problem, which represents the linking constraints

of the original problem and additional convexity constraints and contains a limited number of

variables that are selected so far. When the restricted master problem is solved, it provides dual

multiplier values to a pricing problem, which is a problem that decides whether there are any other

useful columns remaining or not. When the pricing problem returns a column, this new variable is

added to the master problem and that is resolved and the procedure terminates when no columns

price out, i.e., when
∑
t∈{1,...,T}min(ζt, 0) = 0. Note that a valid lower bound on the objective value

of the original problem is available throughout column generation ([15] and [21]). If D̂ε
RMP is the

optimal objective value of the restricted master problem at iteration ε, then a valid lower bound is

D̂ε
LB = D̂ε

RMP +
∑
t∈{1,...,T}min(ζt, 0).

As noted in the literature, the primal solutions of the restricted master problem are usually

degenerate ([18] and [36]). When the dual restricted master problem has multiple optimal solutions

and therefore the dual optimal solution at hand might not be an accurate representation of the

optimal dual space, this may result in the pricing problems pricing out some bad-quality columns,
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which are not used in the optimal solution of the subsequent restricted master problem(s). In this

case, column generation takes a degenerate step. This phenomenon has a severe impact on the

algorithmic performance, and it is usually magnified as the final optimal solution is approached,

thereby called the tailing-off effect ([17] and [21]).

We notice that the per-period Dantzig–Wolfe decomposition of SPCS is degenerate and influ-

enced by the tailing-off effect. To deal with this issue, we restrict the dual space of the restricted

master program by introducing artificial variables on the primal space, i.e., the stabilization tech-

nique described in [18]. This method reduces the number of degenerate iterations via reducing the

feasible dual space. In addition, during early iterations, we employ a hybrid column generation and

Lagrangian relaxation scheme to enhance the algorithmic performance, similar to those described

in [16], [15] and [21]. We present the Lagrangian relaxation problem in the Online Supplement.

In the Lagrangian problem, the demand satisfaction constraints (8) and (9) are dualized into the

objective function (7) with non-negative dual multipliers ηi and µit.

There is a strong relationship between Dantzig–Wolfe decomposition and Lagrangian relaxation

([23]). Because both methods have the same subproblem, we can use both to generate columns. In

addition, the optimal dual variables (γit) for the linking constraints in the Dantzig–Wolfe master

correspond to the optimal multipliers (ηi and µit) for the complicating constraint in the Lagrangian

objective function. Therefore, we can pass the dual values of the restricted master problem to the

Lagrangian relaxation problem and generate a new set of dual values via subgradient optimization

given in the Online Supplement. This updating process is deemed to lead to better quality dual

prices, and it has the additional benefit that we can add several new columns to the restricted

master problem through solving the Lagrangian problem without solving the restricted master

problem. We call this procedure whenever column generation takes a degenerate step, i.e., when

the optimal master objective does not improve in two consecutive iterations.

We now discuss some theoretical relationships between the bounds.

Theorem 3.1 R̂LSCS ≤ D̂LSCS1 = D̂SPCS1 = R̂SPCS.

Proof. The first inequality is established by the fact that applying a Dantzig–Wolfe decom-

position to a minimization problem cannot reduce the lower bound yielded by the LP relaxation

(R̂LSCS). The next equality follows from the fact that both per-item Dantzig–Wolfe decomposi-

tions describe the convex hull of the single-item uncapacitated lot-sizing problems, see, e.g., [3]. If

we let (x̄it, s̄it, ȳit, z̄pt) be a feasible solution of the decomposition model of the LSCS formulation,

it means that a) the solution point is contained in the convex hull defined by constraints (2)-(3)
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and (5)-(6) and b) it satisfies constraints (4). We can prove that this solution must correspond to

a feasible solution point (w̄itq, ȳit, z̄pt) contained in the convex hull defined by constraints (8)-(10)

and (12)-(13) and satisfy constraints (11) for the per-item decomposition of the SPCS formulation.

The above logic follows reversely. Finally, the last equality is trivial due to the fact that the convex

hulls of these relaxations have all integral extreme points. 2

In other words, since the subproblem for the per-item decomposition of the SPCS formulation

is the shortest path reformulation of the single-item uncapacitated lot-sizing problem (containing

constraints (8)-(10) and (12)-(13)), these subproblems have the integrality property. Consequently,

the decomposition bound D̂SPCS1 is equal to the original LP relaxation bound R̂SPCS.

Theorem 3.2 D̂SPCS1 ≤ D̂SPCS2.

Proof. Using the fact that the SPCS formulation contains constraints (8)-(9) and (11)-(13) that

are the same as the constraints of the shortest path reformulation of the classical multi-item capac-

itated lot-sizing problem and the solution space of these constraints is not affected by constraints

(10); and using the fact that the shortest path reformulation of the classical multi-item capaci-

tated lot-sizing problem defines the convex hull of the single-item uncapacitated lot-sizing problem

(e.g., [40]), we have that the SPCS formulation also defines the convex hull of the single-item un-

capacitated lot-sizing problem. Applying the per-item decomposition to the SPCS reformulation

therefore cannot improve the lower bound yielded by the LP relaxation. However, applying the

per-period decomposition to the shortest path formulation can lead to at least equivalent or better

lower bounds, as the pricing problems do not have the integrality property. The numerical examples

showing that for some instances this inequality is satisfied strictly as inequality are provided in the

Online Supplement, where we also show that the per-period decomposition improves lower bounds

for almost all tested instances. 2

Theorem 3.3 D̂LSCS2 ≤ D̂SPCS2

Proof. See the Online Supplement. 2
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4. The progressive selection method for the LS-CS problem

For the simplicity of the description, we use the following binary mixed integer programming

(BMIP) formulation to represent the mathematical formulation of the LS-CS problem.

min a · x+ b · y

Subject to: C · x+D · y ≥ e (P)

x ∈ Rn, y ∈ {0, 1}m

For problem (P), x is an n-dimensional vector of real variables, y is an m-dimensional vector of

binary variables (each element represented as yh, ∀ h ∈ {1, . . . ,m}) and a, b, C, D and e are given

parameter vectors/matrices. To solve problem (P), the progressive selection (PS) method initially

generates a population of solutions, which are not required to be feasible, to problem (P) using

an upper bounding technique such as heuristics within a limited amount of computational time,

and generates a relaxation solution of problem (P) using a lower bounding technique such as LP

relaxation. To facilitate the explanation, we use the following definitions:

ȳ The solution point of y that leads to an upper bound of problem (P). We let the
upper bound be ∞ if ȳ is an infeasible solution point.

y The relaxation solution point of y that leads to a lower bound of problem (P).
Gy The population of the corresponding solution points ȳ in the population of solutions.
G The size of population Gy.
g The index of ȳ in population Gy, where ȳg = [ȳg1 , ȳ

g
2 , . . . , ȳ

g
m]T , ∀ g ∈ {1, ..., G}. As such,

Gy = {ȳ1, ȳ2, . . . , ȳg, . . . , ȳG}. We can write Gy in a matrix form as follows:

Gy =


ȳ1

1 ȳ2
1 . . . ȳg1 . . . ȳG1

ȳ1
2 ȳ2

2 . . . ȳg2 . . . ȳG2
...

... . . . ... . . . ...
ȳ1
m ȳ2

m . . . ȳgm . . . ȳGm


ĝ The index of the solution point of Gy that leads to the smallest upper bound of

problem (P).
ȳĝ The solution point of Gy that leads to the smallest upper bound of problem (P). For

simplicity, we also define ȳĝ as ŷ.

Given Gy and y, the motivation behind the PS method is to find an efficient way to fix a subset

of binary variables yh, h ∈ {1, . . . ,m}, that leads to a restricted version of problem (P) and hence

is easier to solve. To define the restricted problem (called subproblem), we introduce three non-

overlapping subsets of the index set {1, . . . ,m}: FV , SV and MV . FV defines an index set of

binary variables that have been fixed based on results of the previous iteration(s); SV indicates an

index set of binary variables that are individually selected and fixed to the corresponding values of

12



ŷ for a specific subproblem; and MV defines the remaining index set of binary variables. With the

above definitions, the subproblem (PS) can be defined as follows:

min a · x+ b · y

s.t. C · x+D · y ≥ e

yh = ŷh, h ∈ FV ∪ SV (PS)

yh ∈ {0, 1}, h ∈MV

x ∈ Rn

The PS method tries to find a solution for problem (P) by iteratively solving subproblem (PS)

using different subsets FV , SV and MV . At the beginning of each iteration, the subproblem is

determined only by subsets FV and MV , since SV is empty. However, a number of different

selections for SV creates a number of different subproblems. We name these subproblems potential

subproblems, which are solved by using some upper bounding technique. At the current iteration,

the subproblem that leads to the smallest objective value is considered the most interesting potential

subproblem, where a subset of indices of its associated SV is inserted to FV . When the method

moves to the next iteration, SV is reset to be empty. With the evolution of the method, the size of

FV grows and hence the size of subproblems becomes smaller. Since fixing variables in FV might

cause the method to converge locally, the method also generates a number of random subproblems

in order to have a global perspective.

We next describe all six steps of the PS method in detail, from initialization to stop-criterion

check. In the description, emphasis will be given on how subproblems are created, i.e., how the

subsets FV , SV andMV are selected and evolved in the method. Before the description, we define

some necessary notation as follows:

ν The current number of iterations.
N1
ν Number of potential subproblems created at the ν-th iteration.

N2
ν Number of random subproblems created at the ν-th iteration.

ψν Index for subproblems at the ν-th iteration, ψν ∈ {1, ..., N1
ν +N2

ν }.
SVψν Subset SV for the ψν-th subproblem, ψν ∈ {1, ..., N1

ν +N2
ν }.

MVψν Subset MV for the ψν-th subproblem, ψν ∈ {1, ..., N1
ν +N2

ν }.
nψν Number of binary variables selected to be fixed in the ψν-th subproblem,

nψν = |SVψν |, ψν ∈ {1, ..., N1
ν +N2

ν }.
PSψν The ψν-th subproblem, ψν ∈ {1, ..., N1

ν +N2
ν }.

UB The current best upper bound of problem (P).
ŷν ŷ at the ν-th iteration.
Ts Computational time limit for solving subproblem (PS).
Tlim Computational time limit for the whole method.

13



• Step I: Initialization. Set ν = 1, UB =∞, FV = ∅, SV = ∅ and MV = {1, . . . ,m}. Solve

problem (P) using an upper bounding technique (e.g., using different parameter settings) to

obtain Gy with G solutions and ŷ, and solve problem (P) using the LP relaxation of the SPCS

formulation to obtain y, which will be used in Step II for the progressive selection procedure.

Go to Step II.

• Step II: Progressive selection. The main idea of progressive selection is to use a domain-

knowledge-guided selection procedure to determine index subsets SV and MV that are used

for building the subproblems. The details of the progressive selection procedure are described

in Section 5.1. Go to Step III.

• Step III: Subproblem creation. With the selection of SVψν and MVψν , the ψν-th poten-

tial subproblem (PSψν , ∀ ψν ∈ {1, ..., N
1
ν }) can be easily created by fixing the variables in SVψν

to their corresponding values of ŷ. Besides potential subproblems, N2
ν random subproblems

are also created using a random sampling scheme, where the size of the set of fixed variables

is defined as |FV | + nψν . Different from the strategy of fixing variables to ŷ for potential sub-

problems, the binary values, which the selected variables are fixed to, are randomly sampled

with a constant probability of being 0 or 1. The constant probability can be varied depen-

dent on the problem’s properties to enhance the solution quality of random subproblems, e.g.,

according to the proportion observed in the best solution. Go to Step IV.

• Step IV: Subproblem evaluation. A total number of N1
ν + N2

ν subproblems are created

in Step III. These subproblems are solved by the upper bounding technique to derive an upper

bound, potentially improving the current best upper bound UB. To provide better guidance

for subsequent iterations, UB and ŷ are therefore updated whenever a better objective value

is found; population Gy is also updated with the solution points of y of the G current best

subproblems. Go to Step V.

• Step V: Subset update. The subproblem with the smallest upper bound is selected as

the best subproblem at the current iteration. If the best subproblem is one of the potential

subproblems, we select for the best subproblem the variable with index h from the set SV that

has the highest value for ωh (defined in Section 5.1), i.e., h = arg max
h′∈SV

(ωh′). Next we insert

the index h into FV . In case there is more than one variable in SV having the maximum

value of ωh, we randomly select one of them to insert into FV . We set MV = MV −FV and

SV = ∅. Otherwise, we update FV = ∅, MV = {1, 2, . . . ,m} and SV = ∅. Go to Step VI.

14



• Step VI: Stop-criterion check. We define two stop-criteria. The method stops either

when the computational time limit (Tlim) is met or when FV = {1, 2, . . . ,m}. Otherwise,

the method sets ν = ν + 1 and goes to Step II. 2

The PS method has a potential to be applied to other BMIP problems, in addition to the

LS-CS problem investigated in this paper. However, we acknowledge that the effectiveness of the

PS method for general BMIP problems should be verified by an extensive computational analysis,

comparing with effective algorithms from the literature. However, such an extensive computational

comparison is outside of the scope of this paper, since we focus on the application that combines

lot-sizing and cutting-stock. Furthermore, when this method is applied to a specific BMIP problem,

some extra effort in selecting upper bounding and lower bounding techniques is needed to enhance

the method performance.

5. Further discussion of the PS method for the LS-CS problem

In this section, we will discuss the progressive selection procedure in detail, and present the upper

bounding technique we select for the PS method.

5.1 Progressive selection

The details of progressive selection are given in Algorithm 1 that determines index subsets SV and

MV . To describe the selection procedure, we define, for each h ∈MV , ϕh as the distance between

ŷh and y
h
(that is, ϕh = |ŷh − yh|), and we define ωh as the number of ȳgh (∀ g ∈ {1, ..., G}\ĝ) that

take the same value as ŷh. We have ωh =
∑

g∈{1,...,G}\ĝ
σgh, ∀ h ∈MV where

σgh =
{

= 0, if ȳgh 6= ŷh,
= 1, if ȳgh = ŷh,

∀ g ∈ {1, ..., G}\ĝ, h ∈MV.

An example showing how to calculate ϕh and ωh is given in Table 2. With these definitions, in

Algorithm 1, the probability (Probh) of selecting variable yh to be fixed in a potential subproblem

is defined as follows:

Probh = ρ
ρ2·(ωh+1−ϕh)
1∑

h′∈MV ρ
ρ2·(ωh′ +1−ϕh′ )
1

∀ h ∈MV. (14)

Here, parameters ρ1 and ρ2 (ρ1 ≥ 1 and ρ2 ≥ 1) are used to adjust sampling weights. A larger

value of ρ1 and/or ρ2 leads to a higher likelihood of selecting a variable that has high similarities

with solution values of population Gy.
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for ψν ← 1 to N1
ν do

SVψν ← ∅ ;
MVψν ← MV ;
for h← 1 to nψν do

Select an index from MVψν using the likelihood function defined by (14) ;
Remove the index out of MVψν ;
Insert the index to SVψν ;

end
end
Return SVψν , MVψν , ∀ ψν ∈ {1, ..., N1

ν }
Algorithm 1: Progressive selection

One can select the index of a binary variable directly using a uniform distribution, i.e., all

h ∈MV have an equal probability to be picked. However, defining individual probabilities based on

similarities among solution points in population Gy leads to better subproblems. Our computational

experience reveals that the more similar other values ȳgh (∀ g ∈ {1, ..., G}\ĝ, h ∈ {1, 2, ...,m}) with

ŷh, the higher the probability that ŷh is the same as the corresponding optimal value of yh of

problem (P). The analysis of its statistical significance will be given in Section 6. Meanwhile, our

computational tests also show that the smaller the 1-norm distance between the variable’s values

ŷh and y
h
, the higher the probability that the variable’s value ŷh is the same as its corresponding

optimal value of yh of problem (P). The analysis of its statistical significance on the two PS

applications will be also discussed in Section 6. We therefore define the selection probability

function (14) for selecting SVψν that favors the variables that have ŷh most similar with other ȳgh
in population Gy and the variables that have smaller 1-norm distances between variable’s values ŷh
and y

h
. To illustrate these concepts with a numerical example, we present Table 2 where the size

of population Gy is 3 and ĝ is 2. For the sake of simplicity of probability calculations, let the set

MV consist of only the variables presented in the table. If three variables were to be chosen, the

variables y1, y5 and yh+1 would have a higher likelihood to be the choices. We also note that if the

initialization step turned only one feasible solution, i.e., G = 1, then the selection of the variables

is only based on the 1-norm distance.

5.2 The upper bounding technique

For the upper bounding technique of the PS approach, we have considered a number of candidate

methods such as various heuristics. From our experience (in particular in the area of lot-sizing) as

well as from some preliminary testing on the coupled problem, we have observed that relax-and-fix

works well as a general upper bounding technique. Relax-and-fix has been applied successfully to
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Table 2: A numerical example for index selection
Variables y1 y2 y3 y4 y5 . . . yh yh+1 yh+2 . . .

Feasible solution ȳ1 1 0 1 0 1 . . . 1 0 1 . . .
Feasible solution ȳ2 1 1 0 1 1 . . . 0 0 0 . . .
(also ŷ)
Feasible solution ȳ3 1 1 0 0 1 . . . 1 0 1 . . .
Relaxation solution y 1 0.7 0.3 0.4 0.9 . . . 0.6 0.1 0.5 . . .

ωh 2 1 1 0 2 . . . 0 2 0 . . .
ϕh 0 0.3 0.3 0.6 0.1 . . . 0.6 0.1 0.5 . . .
P robh (ρ1 = 2 = ρ2) 0.317 0.052 0.052 0.009 0.276 . . . 0.009 0.276 0.01 . . .

different classes of lot-sizing problems, see, e.g., [2, 43, 48]. The relax-and-fix algorithm implemented

in this paper partitions the set of all periods into three subsets: The first subset is a period window

that contains α periods where all setup decision variables are kept as binary variables; the second

subset contains all periods preceding the period window where all setup decision variables have

been fixed based on solution values of the previous iteration(s); and the third subset consists of all

periods following the period window where all setup decision variables are relaxed as continuous

variables. At the first iteration of the algorithm, a MIP solver is applied to solve this smaller

restricted problem with a limited amount of computational time Trf and the resulting solution

value is used to fix the binary variables of the first β periods of the period window (β ≤ α). The

period window rolls forward to the next few periods containing period β + 1 to period β + α at

the next iteration. The same step is iteratively performed until the period window rolls to the end

and a binary solution value has been achieved for all binary setup decision variables. In the PS

approach, parameters α and β are set to different values to generate a variety of solutions of y in

the initial population Gy.

6. Statistical analyses of the PS method for the LS −CS problem

In Section 5, we gave three observations without verification:

• Observation 1: Potential subproblems yield better upper bounds than random subproblems.

• Observation 2: The more similar other values ȳgh (∀ g ∈ {1, ..., G}\ĝ, h ∈ {1, ...,m}) with ŷh
(∀ h ∈ {1, ...,m}), the higher the probability that ŷh is the same as the corresponding optimal

value of problem (P).

• Observation 3: The smaller the distance between ŷh and y
h
(∀ h ∈ {1, ...,m}), the higher the

probability that ŷh is the same as the corresponding optimal value of problem (P).
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In this section, we will perform statistical analyses to show that the three observations are

statistically significant for the application of the PS method to the LS-CS problem. We generated

two groups of test instances (SetA and SetB) using different parameter settings in order to perform

statistical analyses. The settings of these test instances are described in Section 7.

To test Observation 1, we considered all generated potential and random subproblems for each

test instance and performed statistical analyses using different statistical techniques, such as box-

plot, Welch’s test and finite mixture model. The computational results showed that all potential

subproblems are feasible but only about 52%, on average, random subproblems are feasible.
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Figure 1: Analytical results of three randomly chosen instances to test Observation 1.

Figure 1 shows analytical results of three instances randomly chosen from all test instances

to test Observation 1, where the results of the boxplots and the fitting curves of finite mixture

models for three representative examples are presented. The three top figures give boxplots showing

that potential subproblems have significantly better upper bounds when compared with random

subproblems. The bottom three figures show the histograms of upper bounds of both potential and

random subproblems. The grey curves were derived by the finite mixture model method for which

the distribution of the upper bounds is assumed to be a mixture of two normal distributions. From

the results, we have that the distribution of the upper bounds can be well fitted as a mixture of

two normal distributions with significantly different means; and that the distinguishing accuracy

is about 95% on average for these three representative examples if the upper bounds, generated

by both potential and random subproblems, are separated into two clusters. Moreover, Welch’s

test showed that upper bounds derived from potential subproblems are better with statistical
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significance compared to those derived from random subproblems with a p-value less than 0.0001.

Finally, the test results for Observations 2 and 3 are shown in Figures 2 and 3, respectively. In

Figure 2, boxplots and linear regression results of three groups of test instances are presented to

test Observation 2, where the population group is built using the result at the end of the algorithm.

To ensure the optimal solution be found for all test instances, we generated the instances with the

same parameter settings described in Section 7 but with smaller sizes. In addition, we generated 4

repeats for each parameter setting such that there are a total number of 320 test instances within

each group. The top two sub-figures show results for the group with 5 final products, 5 types of

sub-assemblies and 16 periods; the middle two sub-figures are for the one with 10 final products,

5 types of sub-assemblies and 16 periods; and the bottom two sub-figures are for the one with 10

final products, 10 types of sub-assemblies and 16 periods. In the figure, MG represents, for each

setup decision variable yit (∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}), the number of solution values ȳgit (∀

g ∈ {1, ..., 6}\ĝ) that are the same as ŷit. The range of MG is between 0 and 5, as the population

size was set to 6 in the experimental tests. MR denotes the probability of the value ŷit to be

the same as the corresponding optimal solution value for each test instance, which is calculated

for each MG and distance bin, e.g., if there are 100 variables and 80 of them coincide with the

optimal solution, then MR = 0.8. MR-AVG indicates the MR on average for all 320 test instances

within each group. From the experimental results, we can see that both statistical methods show

a strong statistical relationship between MR and MG. That is, the more similar other values ȳgit (∀

g ∈ {1, ..., 6}\ĝ, i ∈ {1, ..., I}, t ∈ {1, ..., T}) with ŷit (∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}), the higher the

probability that ŷit is the same as the corresponding optimal value of the LS-CS problem.

Figure 3, similar to the previous figure, shows boxplots of the same three groups of test instances

to test Observation 3. MR has a similar interpretation as in the previous analysis. For each setup

decision variable yit (∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}), the distance is calculated as |ŷit − yit|. The

distance value is separated into two different bins in order to perform statistical comparisons shown

by the boxplots. From the experimental results, we can see that this statistical analysis shows a

strong statistical relationship between MR and distance. That is, the smaller the distance between

ŷit and y
it
(∀ i ∈ {1, ..., I}, t ∈ {1, ..., T}), the higher the probability that ŷit is the same as the

corresponding optimal value of the LS-CS problem.

To further analyze the Observations 2 and 3, we also performed Welch’s test, as presented in

Table 3. We note that since the variances across groups are not equal, the common ANOVA F

test is not valid in this setting. In Table 3, F Ratio indicates the F test statistic for the equal

variance test; DFDen records the degrees of freedom in the denominator of the test; and Prob >
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Figure 2: Boxplots and linear regression results of three groups of test instances to test Observation 2.
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Figure 3: Boxplots of the same three groups of test instances to test Observation 3

Table 3: Welch’s test for the effects of MG and distance bins on MR
16-5-5 16-10-5 16-10-10

(Level) - (Level) F Ratio DFDen Prob > F F Ratio DFDen Prob > F F Ratio DFDen Prob > F

(0) - (1) 0.25 289.76 0.6169 6.92 488.28 0.0088 6.36 491.85 <.0120
(1) - (2) 24.69 443.55 <.0001 64.24 562.48 <.0001 62.79 553.42 <.0001

MG (2) - (3) 16.01 513.85 <.0001 32.75 560.69 <.0001 36.05 554.82 <.0001
(3) - (4) 13.30 507.32 0.0003 26.96 543.01 <.0001 23.37 569.2 <.0001
(4) - (5) 158.79 297.51 <.0001 230.81 290.63 <.0001 227.57 297.23 <.0001

(Level) - (Level) F Ratio DFDen Prob > F F Ratio DFDen Prob > F F Ratio DFDen Prob > F

Distance bins [0.0, 0.5) - [0.5, 1.0] 424.11 358.58 <.0001 1075.74 333.03 <.0001 1073.31 330.72 <.0001

F means the probability of obtaining, by chance alone, an F value larger than the one calculated

if in reality the means are equal across all levels. We considered three groups of problems, where

the name of each group follows the syntax “number of periods-number of final products-number
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of sub-assemblies” as indicated on the top row of the table. Observed significance probabilities of

0.05 or less are considered evidence of unequal means across the levels. Obviously, the Welch’s test

clearly shows that both MG and distance bins have significant effects on MR as the p-value is much

smaller than 0.05 for all tests.

7. Computational tests

We generated six groups of test instances (SetA, SetB, SetC, SetD, SetE, and SetF) using different

parameter settings in order to test the relative performance of the PS method. The test instances are

available at DOI: 10.15129/5e486422-31b0-4cbf-b1c1-584602dd7e3d, http://dx.doi.org/10.15129/5e486422-

31b0-4cbf-b1c1-584602dd7e3d. SetA has 20 final products, 20 types of sub-assemblies and 16 peri-

ods, whereas SetB has 25 final products, 15 types of sub-assemblies and 16 periods. Two levels were

applied to six parameters (demand, production cost, plate cost, capacity usage, setup time, and the

ratio (scit/hci) between setup and inventory-holding costs (TBO). The experimental design is full

factorial such that there are 64 test instances in each group. The detailed design of the parameter

settings for SetA and SetB is given as follows:

w × l Plate width × length is set to 10 × 20.
lj Length of sub-item is uniformly distributed in [2.5, 5].
uc There are two settings, denoted by low and high, indicating plate cost is set to

0.3 and 3, respectively.
rji Number of sub-assemblies is randomly selected from set {1, 2, 3, 4, 5}.
pcit There are two settings, denoted by low and high, that indicate the value of pcit

is set to a coefficient of {0.3, 3}×
∑J
j=1 0.1 · rji · lj · w, respectively. The value is

independent from period t.
scit There are two settings, denoted by low and high, that indicate setup cost scit is

set to 1.5 · pcit and 15 · pcit, respectively.

hci Inventory-holding cost hci is set to
∑

t∈{1,...,T} 0.01·pcit
T .

ajp Cutting patterns that were generated by a priori column generation procedure.
vit Unit production time vit is set to

∑J
j=1 rji · w.

stit There are two settings, denoted by low and high, that indicate setup time stit is
set to 0.6 · vit and 6 · vit, respectively.

dit There are two settings, denoted by low and high, that indicate gross demand
amount is uniformly distributed in [0, 15] and [0, 150] in the first period and [0, 60]
and [0, 600] for other periods, respectively.

Ct There are two settings, denoted by low and high, that indicate a coefficient of

{1.05, 0.95}×1.1·
∑I

i=1

∑T

t=1(stit+vit·dit)
T , respectively.

Additionally, we create SetC and SetD by changing some parameter settings of SetA and SetB,

respectively. We keep all parameter settings the same as SetA and SetB except that the production

cost pcit is divided by
∑J
j=1 0.1 · rji · lj · w, while the setup costs scit is multiplied by 30. The
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purpose of modifying the parameters is to generate test instances with higher TBOs, which are

more challenging to solve according to the computational tests. Furthermore, we create SetE and

SetF by doubling the size of planning periods and tripling the size of sub-assemblies of SetC and

SetD, respectively.

The PS method was implemented using the SPCS formulation in GAMS v24.3, a high-level

algebraic modeling language, where IBM Ilog CPLEX 12.6 is set as the LP/IP solver. All com-

putations were run on a PC with Intel(R) Core(TM) 2.8 GHz processor and 16.0 GB RAM. The

parameter settings for the PS method was given as follows: Parameter Ts was set to 5 seconds.

Parameters (α, β) were respectively set to (4, 2), (3, 2), (2, 1), (3, 1), (4, 3) and (4, 1) to derive

the initial population Gy and to solve subproblems. The size of Gy was set to 6. Parameters ρ1 and

ρ2 are set to (2, 2). The number of potential and random subproblems at each iteration were set

to 4 and 1, and the size of subset SV was set to 0.30 · |MV |. We note that we used the column

generation algorithm proposed by [24] and [25] to generate cutting patterns ajp, mainly because

this was sufficient for test problems with a small number of patterns. We acknowledge that this

procedure of generating cutting patterns can be improved by implementing more efficient column

generation algorithms ([6]).

7.1 Lower bounds

Table 4: Comparisons of lower bounds for SetA
LSCS SPCS LSCS2 SPCS2
LB time LB time LB (iter, time, col) LB (iter, time, col)

Demand
Low 3,700,913 0.02 3,842,560 0.02 3,704,009 (623, 212, 4546) 3,843,762 (495, 146, 4361)
High 35,235,210 0.01 35,547,112 0.02 35,240,017 (437, 133, 3559) 35,547,695 (774, 294, 8567)
Production Cost
Low 4,327,473 0.01 4,369,379 0.02 4,328,208 (553, 182, 4067) 4,369,538 (631, 218, 6399)
High 34,608,650 0.01 35,020,293 0.02 34,615,818 (506, 163, 4038) 35,021,920 (638, 223, 6528)
Plate Cost
Low 18,660,712 0.02 18,889,104 0.02 18,664,500 (533, 181, 4014) 18,890,084 (645, 220, 6488)
High 20,275,410 0.01 20,500,568 0.02 20,279,526 (526, 164, 4091) 20,501,373 (624, 221, 6440)
TBO
Low 19,177,144 0.01 19,256,681 0.03 19,177,875 (494, 160, 3635) 19,256,812 (744, 281, 8185)
High 19,758,979 0.01 20,132,990 0.02 19,766,151 (565, 185, 4470) 20,134,646 (525, 160, 4742)
Setup Time
Low 19,662,931 0.01 19,895,243 0.02 19,667,724 (485, 158, 3950) 19,896,217 (678, 235, 6878)
High 19,273,192 0.01 19,494,428 0.03 19,276,302 (574, 187, 4155) 19,495,240 (591, 206, 6049)
Utilization
Low 19,437,085 0.01 19,665,485 0.02 19,439,432 (559, 178, 4050) 19,666,133 (611, 212, 6327)
High 19,499,038 0.01 19,724,187 0.03 19,504,594 (500, 167, 4055) 19,725,325 (658, 228, 6600)
Average 19,468,061 0.01 19,694,836 0.02 19,472,013 (530, 172, 4053) 19,695,729 (634, 220, 6464)

The relative computational effectiveness of the lower bound techniques was tested on SetA and

SetB. The detailed results are summarized in Tables 4 and 5, where the columns associated with
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LSCS and SPCS give the respective lower bounds achieved by the LP relaxation of LSCS and

SPCS; and the columns associated with LSCS2 and SPCS2 give respective lower bounds achieved

by the column generation procedure of the per-period Dantzig–Wolfe decomposition of LSCS and

SPCS. Symbol (iter, time, col) represents the number of iterations, time (minute), and number of

columns associated with the relative column generation procedure. The lower bounds associated

with the per-item Dantzig–Wolfe decomposition are not listed in these two tables because they are

equivalent to the lower bounds achieved by the LP relaxation of the SPCS formulation.

Table 5: Comparisons of lower bounds for SetB
LSCS SPCS LSCS2 SPCS2
LB time LB time LB (iter, time, col) LB (iter, time, col)

Demand
Low 3,464,744 0.01 3,594,300 0.02 3,465,888 (1008, 408, 7199) 3,595,031 (678, 235, 6158)
High 33,602,414 0.01 33,900,820 0.02 33,603,828 (668, 259, 5353) 33,901,108 (1007, 623, 12270)
Production Cost
Low 4,115,648 0.01 4,155,195 0.02 4,115,962 (847, 334, 6289) 4,155,277 (835, 454, 9176)
High 32,951,509 0.01 33,339,924 0.02 32,953,755 (830, 333, 6263) 33,340,862 (850, 404, 9251)
Plate Cost
Low 17,561,790 0.01 17,774,258 0.02 17,562,953 (835, 337, 6267) 17,774,754 (851, 446, 9290)
High 19,505,367 0.01 19,720,862 0.02 19,506,763 (842, 330, 6285) 19,721,386 (834, 412, 9137)
TBO
Low 18,321,092 0.01 18,397,033 0.02 18,321,393 (740, 288, 5491) 18,397,057 (972, 605, 11709)
High 18,746,066 0.01 19,098,087 0.02 18,748,324 (937, 379, 7061) 19,099,082 (714, 253, 6719)
Setup Time
Low 18,763,980 0.01 18,985,868 0.02 18,765,487 (824, 337, 6180) 18,986,401 (876, 456, 9733)
High 18,303,177 0.01 18,509,252 0.02 18,304,229 (852, 330, 6372) 18,509,739 (809, 402, 8695)
Utilization
Low 18,384,044 0.01 18,598,761 0.02 18,384,677 (856, 333, 6254) 18,599,171 (782, 377, 8496)
High 18,683,114 0.01 18,896,359 0.02 18,685,039 (821, 334, 6298) 18,896,969 (903, 481, 9932)
Average 18,533,579 0.01 18,747,560 0.02 18,534,858 (838, 334, 6276) 18,748,070 (843, 429, 9214)

From the results, it can be seen that the LP relaxation of SPCS and Dantzig–Wolfe decom-

positions improve lower bounds over the LP relaxation of LSCS. We note that the per-period

decomposition of LSCS and SPCS consumes a larger amount of computational time. To have a

good balance between computational time and lower bound quality, we select the LP relaxation

of SPCS as the lower bound technique for the PS method. However, if the computational time is

not of concern, the per-period decomposition of SPCS is recommended in order to derive the best

lower bounds.

We note that the calculations of the linear relaxation (R̂LSCS) and all the per-item decomposi-

tions (D̂LSCS1 and D̂SPCS1) remain the same when integrality on z variables is enforced, since in

the per-item decomposition, the BOM constraint (which is the only one containing the z variables)

will be in the master problem, in which the variables are relaxed (including the z variables). On

the other hand, for the per-period decompositions, we tested the problems with integer z vari-

ables, where the sub-problems became very difficult to solve and made it impractical to use these
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decompositions.

7.2 Preliminary tests for parameter settings

The relative performance of the PS method was tested under different settings of parameters,

including G (the size of population Gy), ρ1, ρ2, the size of subset SV , and the numbers of potential

and random subproblems (N1
ν and N2

ν ). For their default setting, we let Gy be 6; both ρ1 and ρ2

be 2; the size of subset SV be 0.30 · |MV |; and N1
ν and N2

ν be 4 and 1. The number of cases for

these parameters is given as follows:

• G: there are 3 cases including 2, 4, and 6.

• The size of subset SV : there are 7 cases including 0.05, 0.15, 0.30, 0.45, 0.60, 0.75, and 0.90

of |MV |.

• ρ1 and ρ2: there are 4 cases including (1, 1), (2, 2), (3, 3), and (4, 4).

• N1
ν and N2

ν : there are 3 cases including (2, 1), (4, 1), and (5, 3).

When testing each of the above parameters, the other parameters are set to the default values.

Figure 4 compares the performance of the parameter settings by the number of the best solutions

and Table 6 shows their average optimality gaps for the 64 test instances in SetA. From the figure

and table, we see that the PS method performs the best when each parameter is set to the default

values and the performance of the PS method changes but is relatively stable under different

parameter settings.
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Figure 4: The number of the best solutions achieved under each scenario

The PS method performs better when parameter G is set to 6 compared to 2 and 4. This

means that increasing the variety of the population of Gy may enhance the performance of the

PS method. In addition, the PS method performs better when the size of subset SV is set to 0.3

·|MV |. Increasing (decreasing) the size makes the subproblems PS more similar to the current best
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Table 6: Optimality gaps under each scenario
G PS Gap |SV |/|MV | PS Gap (ρ1, ρ2) PS Gap (N1

ν , N2
ν ) PS Gap

2 0.1871% 0.05 0.1711% (1, 1) 0.1711% (2, 1) 0.1603%
4 0.1792% 0.15 0.1686% (2, 2) 0.1589% (4, 1) 0.1589%
6 0.1589% 0.30 0.1589% (3, 3) 0.1650% (5, 3) 0.1629%

0.45 0.1709% (4, 4) 0.1717%
0.60 0.1668%
0.75 0.1759%
0.90 0.1769%

The lower bounds yielded by the LP relaxation of the SPCS formulation are applied to calculate the PS optimality gaps.

subproblems (to the original problem), which reduces the variety of subproblems and negatively

impacts the performance of the PS method. Furthermore, the PS method performs better when ρ1

and ρ2 are set to 2. The selection procedure of SV is too little (much) focused on the variables that

have high similarities on the solution values of population Gy when ρ1 and ρ2 are set to be too small

(high), which negatively impacts the performance of the PS method. Based on our computational

experience, the performance of the PS method is not sensitive to the numbers of potential and

random subproblems. However, we recommend setting these numbers not too big, in order to

avoid slowing down the process of updating subset MV.

7.3 Comparison with other methods for SetA and SetB

We compared the PS approach with the Lagrangian relaxation-based heuristic (denoted as LRH)

proposed by [27] and IBM Ilog CPLEX 12.6 (denoted as CPLEX). The PS and CPLEX approaches

were implemented in GAMS v24.3 using the SPCS formulation. Detailed parameter settings for the

PS approach were described above. For the CPLEX method, IBM Ilog CPLEX 12.6 was set as an

IP solver using the default setting. For the LRH approach, using GAMS v24.3, we applied the same

formulation (LSCS) to implement the algorithm described in Section 4 of [27]. As shown in the

algorithm, a sub-gradient method is employed to update multipliers for the Lagrangian relaxation

problems that are then solved to optimality. If the optimal solution of the Lagrangian relaxation

problem is not feasible to the original problem, a smoothing heuristic is applied to obtain a feasible

solution. The incumbent solution is continuously updated to the current best solution until a

stopping criterion is satisfied. We note that there is a slight difference in the LSCS formulation

compared to the one proposed in [27], i.e., the LSCS formulation additionally considers setup

times in the capacity constraints. It creates a small difference in the objective of the Lagrangian

relaxation problems. However, it does not influence the core implementation of the algorithm.

The total computational time of 60 seconds was allocated for each test instance. We note that

for every instance and every solution method used, we have imposed this maximum time in each
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computation.

Table 7: Comparisons of solution characteristics for SetA
LRH CPLEX PS

Average
Pattern # Time (s) Inv $ Set # Plate # Inv $ Set # Plate # Inv $ Set # Plate #

Demand
Low 62 48 45,211 118 103,028 45,621 91 103,029 45,394 92 103,030
High 62 42 172,723 184 1,012,526 169,164 170 1,012,527 167,679 172 1,012,526
Production Cost
Low 62 47 19,869 161 559,246 19,610 130 559,245 19,535 131 559,246
High 62 43 198,065 141 556,307 195,174 131 556,310 193,538 132 556,310
Plate Cost
Low 62 45 111,857 144 550,200 111,116 130 550,201 109,749 131 550,201
High 62 45 106,078 158 565,353 103,669 131 565,354 103,324 132 565,355
TBO
Low 62 45 38,578 180 552,046 36,026 169 552,044 35,963 170 552,043
High 62 45 179,357 123 563,508 178,759 92 563,512 177,110 94 563,512
Setup Time
Low 62 45 103,965 159 559,754 102,812 134 559,757 101,066 136 559,758
High 62 45 113,969 143 555,799 111,973 127 555,799 112,007 128 555,798
Utilization
Low 62 45 111,934 145 558,175 108,885 131 558,177 110,298 132 558,178
High 62 45 106,001 157 557,378 105,900 130 557,379 102,775 132 557,378

Average 62 45 108,967 151 557,777 107,392 131 557,778 106,536 132 557,778

The standard deviations of Inv $, Set #, and Plate # for the PS method are 2,276, 0.86, and 3.34 on average, respectively.

Table 8: Comparisons of solution characteristics for SetB
LRH CPLEX PS

Average
Pattern # Time (s) Inv $ Set # Plate # Inv $ Set # Plate # Inv $ Set # Plate #

Demand
Low 46 36 42,368 147 95,770 43,330 111 95,771 43,197 114 95,772
High 47 35 167,202 228 965,755 161,960 213 965,758 158,570 215 965,761
Production Cost
Low 46 36 18,708 199 531,792 18,286 163 531,794 18,194 165 531,799
High 46 35 190,863 176 529,734 187,004 161 529,736 183,573 164 529,733
Plate Cost
Low 46 36 104,689 176 519,997 104,148 161 519,995 101,875 163 519,995
High 47 35 104,882 199 541,528 101,143 163 541,535 99,892 165 541,537
TBO
Low 47 37 37,379 224 528,531 35,329 211 528,530 35,082 212 528,530
High 45 34 172,191 151 532,995 169,961 114 532,999 166,685 116 533,002
Setup Time
Low 46 36 101,606 197 535,117 100,767 165 535,121 98,529 167 535,125
High 46 35 107,965 178 526,408 104,523 159 526,408 103,238 161 526,408
Utilization
Low 46 35 105,136 184 522,327 103,085 163 522,326 101,533 164 522,327
High 47 36 104,435 192 539,199 102,205 161 539,203 100,233 164 539,206

Average 46 36 104,785 188 530,763 102,645 162 530,765 100,883 164 530,766

The standard deviations of Inv $, Set #, and Plate # for the PS method are 1,704, 0.87, and 4.65 on average, respectively.

First, we discuss some important solution characteristics as presented in Tables 7 and 8, which

indicate the number of cutting patterns (Pattern #), computational time of generating the cutting

patterns (Time (s)), and comparisons of LRH, CPLEX, and PS solutions in terms of total inventory-

holding costs (Inv $), total number of setups (Set #) and total number of plates (Plate #), where

the presentation is classified according to problem characteristics such as demand and production

cost. Since PS is an algorithm with randomness, we executed it four times for each test instance

and therefore, the tables present the “average” and “standard deviation” values obtained from these

four tests. An interesting aspect of the results is that the difference among LRH, CPLEX, and PS
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solutions is quite minimal for the number of plates used, but it seems to vary significantly more

with respect to the number of setups and inventory-holding costs. The PS approach has an obvious

advantage of reducing inventory-holding costs and number of setups compared to the LRH method,

while the PS approach has a close performance compared to CPLEX.

Next, we present details on upper bounds as well as optimality gaps in Tables 9 and 10. The

second, third, and fourth columns list upper bounds obtained by the LRH, CPLEX, and PS

methods, respectively. The remaining columns indicate optimality gaps calculated in the fash-

ion (UB − LB)/UB for the LRH, CPLEX, and PS methods, where two different lower bounds

are used, including those obtained by the LP relaxation of the SPCS formulation (SPCS) and the

per-period Dantzig–Wolfe decomposition of the SPCS formulation (SPCS2). Similar to the pre-

vious two tables, the figures for PS indicate both averages and standard deviations for four runs

accomplished for each instance.

Table 9: Comparisons of bounds and optimality gaps for SetA
Upper bounds LRH Gaps CPLEX Gaps PS Gaps

Average
LRH CPLEX PS SPCS SPCS2 SPCS SPCS2 SPCS SPCS2

Demand
Low 3,929,753 3,851,266 3,856,781 2.76% 2.73% 0.19% 0.17% 0.32% 0.29%
High 35,584,998 35,551,227 35,554,078 0.14% 0.14% 0.01% 0.01% 0.02% 0.02%
Production Cost
Low 4,393,407 4,370,408 4,371,130 1.95% 1.94% 0.09% 0.07% 0.15% 0.14%
High 35,121,345 35,032,086 35,039,729 0.95% 0.93% 0.12% 0.10% 0.19% 0.17%
Plate Cost
Low 18,913,143 18,895,964 18,900,143 1.21% 1.19% 0.12% 0.10% 0.19% 0.17%
High 20,601,608 20,506,530 20,510,716 1.70% 1.68% 0.09% 0.07% 0.15% 0.14%
TBO
Low 19,262,975 19,257,327 19,257,619 0.10% 0.10% 0.01% 0.01% 0.01% 0.01%
High 20,251,777 20,145,166 20,153,240 2.80% 2.77% 0.20% 0.17% 0.33% 0.30%
Setup Time
Low 19,975,922 19,903,192 19,906,936 1.78% 1.76% 0.13% 0.11% 0.18% 0.16%
High 19,538,829 19,499,302 19,503,923 1.12% 1.11% 0.08% 0.06% 0.16% 0.15%
Utilization
Low 19,709,921 19,669,585 19,674,221 1.09% 1.08% 0.08% 0.06% 0.16% 0.15%
High 19,804,830 19,732,909 19,736,638 1.81% 1.79% 0.13% 0.11% 0.18% 0.16%

Average 19,757,376 19,701,247 19,705,429 1.45% 1.44% 0.10% 0.09% 0.17% 0.16%

The standard deviations of the optimality gaps SPCS and SPCS2 for the PS method are 0.02% and 0.02% on average, respectively.

From the results, we observe that the PS approach offers solutions superior to the LRH method

across various parameter settings with respect to the upper bounds. We also note that the PS

method showed, in general, a stable performance over the four runs for each instance as indicated

by small standard deviations. In addition, when comparing the PS approach with the LRH method,

there are big differences in the total inventory-holding costs and the total number of setups but

smaller differences in the upper bounds. This is impacted by the other components in the prob-

lem objective: the production and plate costs, for which the PS approach has a relative smaller

improvement over the LRH method. In order to know whether the difference in the upper bounds

would be more highlighted if the parameters of production and plate costs (pcit and uc) are smaller,

27



Table 10: Comparisons of bounds and optimality gaps for SetB
Upper bounds LRH Gaps CPLEX Gaps PS Gaps

Average
LRH CPLEX PS SPCS SPCS2 SPCS SPCS2 SPCS SPCS2

Demand
Low 3,687,177 3,599,505 3,605,795 2.88% 2.86% 0.13% 0.11% 0.27% 0.26%
High 33,937,166 33,903,388 33,906,535 0.12% 0.12% 0.01% 0.01% 0.02% 0.02%
Production Cost
Low 4,176,120 4,155,891 4,156,687 1.91% 1.90% 0.06% 0.05% 0.12% 0.12%
High 33,448,223 33,347,002 33,355,643 1.09% 1.08% 0.07% 0.06% 0.17% 0.16%
Plate Cost
Low 17,791,612 17,778,074 17,783,081 1.14% 1.13% 0.07% 0.06% 0.16% 0.15%
High 19,832,731 19,724,820 19,729,249 1.86% 1.85% 0.07% 0.06% 0.13% 0.13%
TBO
Low 18,401,873 18,397,429 18,397,782 0.09% 0.09% 0.00% 0.00% 0.01% 0.01%
High 19,222,469 19,105,465 19,114,548 2.90% 2.89% 0.13% 0.11% 0.28% 0.26%
Setup Time
Low 19,056,783 18,990,480 18,995,328 1.73% 1.72% 0.08% 0.07% 0.15% 0.14%
High 18,567,560 18,512,413 18,517,002 1.27% 1.26% 0.06% 0.05% 0.14% 0.13%
Utilization
Low 18,645,452 18,601,340 18,605,980 1.17% 1.16% 0.05% 0.04% 0.13% 0.12%
High 18,978,890 18,901,553 18,906,350 1.82% 1.81% 0.08% 0.07% 0.16% 0.15%

Average 18,812,171 18,751,447 18,756,165 1.50% 1.49% 0.07% 0.06% 0.15% 0.14%

The standard deviations of the optimality gaps SPCS and SPCS2 for the PS method are 0.01% and 0.01% on average, respectively.

we performed two extra tests for all instances with high demand: the first test reduces pcit by 80%

and keeps all other parameters unchanged; and the second test further reduces uc by 80%. The

differences in upper bounds between LRH and PS for these two tests are respectively 1.3% and

1.7%, relative to 0.5% for the original test.

We performed additional tests for SetA by setting the computational time to 1,600 seconds.

The optimality gaps based on the LP relaxation of SPCS, on average, drops from 0.17% to 0.15%.

With additional computational time allowed, the optimality gaps will be reduced further but the

reduction rate is deteriorating. However, the lower bound has a gap relative to the optimal objective.

As such, we will not achieve an optimality gap of zero even when the PS method finds the optimal

solution. Furthermore, the PS method is a heuristic that cannot guarantee an optimal solution.

It improves the solution quality faster in the early iterations, and then it slows down when the

incumbent upper bound is getting closer to the optimal objective. At this point, it is difficult to

find a better solution because most points in the neighborhood have a worse solution compared to

the incumbent.

When comparing the PS method with the CPLEX method, there are small differences in the

upper bounds, the total inventory-holding costs, and the total number of setups. However, the

CPLEX method achieves slightly better upper bounds that are reflected by a smaller number of

setups. The CPLEX method thoroughly searches all possible solutions using a branch-and-bound

technique and aims to find an optimal solution, and it may have advantages over heuristics for

problems that are not complicated to solve. However, when the problems become complicated or

the problem sizes become large, the CPLEX method may be limited on finding a good solution
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under a reasonable amount of computational time. In the next subsection, we will test four other

sets that contain more complicated test problems, for which the PS method can achieve better

solutions than the CPLEX method.

Table 11: Computational results of PS-Det and PS-Integer
SetA SetB

Upper bounds Gaps Upper bounds Gaps
Det Int Det Int Det Int Det Int

Demand
Low 3,856,533 3,878,526 0.330% 0.870% 3,606,637 3,622,015 0.291% 0.724%
High 35,554,490 35,576,754 0.019% 0.082% 33,906,604 33,925,559 0.016% 0.073%
Production Cost
Low 4,371,355 4,376,287 0.165% 0.467% 4,156,736 4,160,933 0.130% 0.394%
High 35,039,668 35,078,993 0.185% 0.485% 33,356,505 33,386,642 0.177% 0.403%
Plate Cost
Low 18,899,885 18,918,103 0.184% 0.471% 17,783,426 17,796,808 0.161% 0.378%
High 20,511,138 20,537,177 0.165% 0.481% 19,729,815 19,750,766 0.146% 0.420%
TBO
Low 19,257,721 19,259,881 0.015% 0.089% 18,397,862 18,399,805 0.013% 0.077%
High 20,153,302 20,195,400 0.335% 0.863% 19,115,379 19,147,769 0.294% 0.720%
Setup Time
Low 19,907,464 19,930,785 0.180% 0.499% 18,995,788 19,015,145 0.157% 0.432%
High 19,503,559 19,524,496 0.170% 0.453% 18,517,453 18,532,430 0.150% 0.365%
Utilization
Low 19,674,493 19,692,916 0.164% 0.425% 18,606,860 18,620,149 0.151% 0.370%
High 19,736,530 19,762,365 0.186% 0.527% 18,906,380 18,927,425 0.156% 0.427%
Average 19,705,512 19,727,640 0.175% 0.476% 18,756,620 18,773,787 0.153% 0.399%

Table 11 shows the results of the deterministic version of the PS method (Det), and the results

of the PS method when solving the problem with integer z variables (Int), where the same com-

putational time limits were used as in previous tests. In the deterministic version, we generated

subproblems by selecting the variables with the highest Pq values. Iteratively, when some variables

in FV are fixed, we also just fix the variables with the highest Pq. The main differences of the

deterministic version compared to the original PS algorithm are: i) SV is selected deterministically

using the highest Pq, and ii) variables with the highest Pq in FV are fixed, instead of randomly

picking variable to fix according to Pq values. On the other hand, for the PS method considering

integer z variables, we have explicitly incorporated the integrality on the z variables within the

heuristic, where the calculation of upper bounds becomes more difficult compared to the relaxed

case. More specifically, as described in Section 5.2, the relax-and-fix heuristic partitions the set of

all periods t ∈ {1, ..., T} into three subsets of setup decision variables yit in order to create restricted

subproblems, and then solves the subproblems iteratively. To incorporate the integral z variables,

the heuristic still partitions the set of all periods t ∈ {1, ..., T} into the same three subsets but both

for setup decision variables yit and for plate number zpt to create subproblems, and then solves the

subproblems iteratively. In the heuristic, yit and zpt are treated similarly in terms of their index t
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being used for the partitioning into three subsets.

As the results indicate, the deterministic version of the PS method results in only slightly worse

solutions on average, where the difference is minimal. On the other hand, enforcing integrality on z

variables results in higher duality gaps as expected. However, the average gaps remain reasonably

low.

7.4 Comparison with other methods for harder problems

We additionally tested the relative computational effectiveness of the LRH, CPLEX, and PS meth-

ods on SetC, SetD, SetE, and SetF and summarized the detailed results in Tables 12 and 13. In the

tables, the columns associated with CPLEX and PS give respective upper bounds and optimality

gaps achieved by the CPLEX and PS methods, and the optimality gaps were calculated using the

lower bounds obtained by the LP relaxation of the SPCS formulation. We omitted the results of

LRH because they are consistently worse than the results of CPLEX and PS. We allocated a total

computational time of 60 seconds for each test instance in SetC and SetD and 600 seconds for

instances in SetE and SetF (because of the complexity). Similar to the previous tables, the figures

for PS indicate both average and standard deviation for four runs accomplished for each instance.

Table 12: Comparisons of bounds and optimality gaps for SetC and SetD
SetC SetD

Upper bounds Optimality gaps Upper bounds Optimality gaps
CPLEX PS CPLEX PS CPLEX PS CPLEX PS

Demand
Low 7,420,684 7,358,302 3.80% 2.89% 6,727,147 6,692,440 2.81% 2.09%
High 10,637,069 10,514,561 2.14% 1.52% 9,969,074 9,892,513 1.56% 1.07%
Production Cost
Low 2,401,762 2,386,645 2.52% 1.93% 2,250,873 2,239,698 1.86% 1.32%
High 15,655,991 15,486,218 3.41% 2.48% 14,445,348 14,345,254 2.51% 1.84%
Plate Cost
Low 8,386,180 8,284,487 3.45% 2.53% 7,587,848 7,522,343 2.42% 1.71%
High 9,671,573 9,588,375 2.49% 1.88% 9,108,373 9,062,610 1.95% 1.45%
TBO
Low 2,631,776 2,619,000 2.14% 1.60% 2,511,511 2,499,383 1.61% 1.06%
High 15,425,977 15,253,863 3.80% 2.81% 14,184,710 14,085,569 2.76% 2.10%
Setup Time
Low 9,650,242 9,547,234 2.88% 2.16% 8,938,273 8,877,412 2.15% 1.51%
High 8,407,511 8,325,629 3.06% 2.25% 7,757,948 7,707,540 2.22% 1.65%
Utilization
Low 7,981,115 7,889,451 2.86% 2.16% 7,298,835 7,255,250 2.08% 1.60%
High 10,076,638 9,983,412 3.08% 2.25% 9,397,386 9,329,702 2.29% 1.56%

Average 9,028,877 8,936,431 2.97% 2.20% 8,348,111 8,292,476 2.18% 1.58%

The standard deviations of the optimality gap for the PS method are 0.19% and 0.17% on average for SetC and SetD, respectively.

From the results, we observe that the PS approach offers upper bounds and optimality gaps

superior to the CPLEX method across various parameter settings. We also note that the PS

method showed, in general, a stable performance over the four runs for instances as indicated

by relatively small standard deviations. Additionally, as indicated by the optimization gaps, the

instances in SetC and SetD are more complicated to solve than the instances in SetA and SetB.
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Table 13: Comparisons of bounds and optimality gaps for SetE and SetF
SetE SetF

Upper bounds Optimality gaps Upper bounds Optimality gaps
CPLEX PS CPLEX CPLEX2∗ PS CPLEX PS CPLEX CPLEX2∗ PS

Demand
Low 33,297,188 31,519,414 7.93% 6.00% 4.13% 29,583,292 28,793,473 5.72% 4.91% 3.58%
High 52,323,886 51,092,881 3.90% 2.94% 2.19% 48,616,735 47,630,377 2.99% 2.40% 1.77%
Production Cost
Low 12,570,244 12,268,587 5.14% 3.79% 2.50% 11,671,038 11,511,985 3.55% 3.11% 2.25%
High 73,050,830 70,343,708 6.69% 5.15% 3.82% 66,528,989 64,911,864 5.15% 4.20% 3.10%
Plate Cost
Low 37,826,473 36,875,607 6.47% 5.16% 3.81% 34,896,214 34,194,592 4.82% 4.09% 3.13%
High 47,794,601 45,736,689 5.36% 3.79% 2.51% 43,303,813 42,229,257 3.88% 3.22% 2.23%
TBO
Low 14,187,262 14,028,370 3.72% 2.88% 2.26% 13,368,893 13,234,388 2.83% 2.37% 1.71%
High 71,433,812 68,583,925 8.11% 6.07% 4.06% 64,831,134 63,189,461 5.88% 4.94% 3.64%
Setup Time
Low 45,291,880 43,679,730 5.75% 4.33% 2.90% 41,701,139 40,814,920 4.35% 3.64% 2.67%
High 40,329,194 38,932,565 6.08% 4.62% 3.42% 36,498,888 35,608,930 4.36% 3.67% 2.69%
Utilization
Low 37,318,912 36,001,992 5.94% 4.47% 3.03% 33,198,300 32,619,723 4.07% 3.51% 2.74%
High 48,302,162 46,610,303 5.89% 4.48% 3.29% 45,001,727 43,804,126 4.63% 3.80% 2.62%

Average 42,810,537 41,306,148 5.92% 4.47% 3.16% 39,100,014 38,211,925 4.35% 3.65% 2.68%
∗ CPLEX2 indicates the optimality gaps achieved by the CPLEX method when the time limit is set to 3,600 seconds. The standard

deviations of the optimality gap for the PS method are 0.34% and 0.28% on average for SetE and SetF, respectively.

Even more challenging problems are the instances in SetE and SetF, which have more planning

periods, more types of sub-assemblies, and more cutting patterns. We observe that the instances

in SetE and SetF have 182 and 137 cutting patterns on average, respectively. The PS method

has more advantages over the CPLEX method for the larger instances in SetE and SetF. We note

that the PS method still achieved better solutions even when the CPLEX method is allowed 3,600

seconds on the computational time limits.

Regarding the solutions of the total inventory-holding costs and the total number of setups and

plates, the PS method can reduce the number of setups but make a less noticeable improvement

on the inventory-holding costs and the total number of plates for instances in SetC and SetD when

compared to the CPLEX method. However, the PS method can both reduce the number of setups

from 142 to 133 and inventory-holding costs from 2,216,181 to 2,183,260 on average for instances

in SetE and SetF, although the improvement on the total number of plates is still very small for

these instances.

8. Conclusions and future research

This paper proposes a progressive selection method and a number of new Dantzig–Wolfe decompo-

sition and column generation methods for the LS-CS problem. All of these Dantzig–Wolfe decom-

position methods are capable of deriving better lower bounds than the LP relaxation of the original

formulation. This paper theoretically and computationally evaluates their relative effectiveness such

that the one with the best performance is selected and combined into the PS approach. Extensive

computational tests show that the PS approach can achieve better solutions than the Lagrangian
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relaxation-based heuristic proposed by [27] and perform better for complicated problems when

compared to the CPLEX method. The current per-period Dantzig–Wolfe decomposition consumes

relatively long computational time. It is interesting to explore if replacing the exact pricing with

dual-feasible functions ([13]) can reduce computational time while preserving the bound quality.

It is also interesting to apply the two-period convex hull closures ([1]) and the similar horizon

decomposition approach ([21]) to improve lower bounds for the LS-CS problem.

The performance of the PS approach is extensively analyzed by statistical methodologies, such

as boxplots, Welch’s test, linear regression and finite mixture models. The statistical analyses

show that solution values of the combined exact methods and heuristics can provide statistically

significant domain knowledge on the optimal solution value. Meanwhile, the statistical analyses

show that the domain-knowledge-guided subproblems can derive much better solution qualities

than those subproblems generated without using the domain knowledge. Besides its applications

on the PS approach, we believe that such domain knowledge has the potential to be applied to other

heuristics, such as simulated annealing, tabu search, neighborhood search and genetic algorithm,

to guide their search procedure. This will be an interesting area for future research.

Besides the application to the LS-CS problem, the PS method is a generic framework that has

the potential to solve various classes of BMIP problems. The framework possesses flexibility in

selecting the combined exact methods and heuristics and does not force any restrictions on inside-

technologies of these methods. One generic application of this framework is that any existing

exact methods and heuristics, that have been applied to a BMIP problem, can be adapted into

the framework. The potential benefit is that, unlike some methods applied to the complete large

problem consuming a large amount of computational time and still possibly achieving an undesired

solution quality, in our framework, different methods are combined to solve smaller subproblems

that consume a much smaller amount of computational time and potentially improve the solution

quality when each subproblem is solved.

Future work along this line of research should focus on implementing the method to other MIP

problems, and exploring theoretical results on how lower and upper bounds can be used to define

intelligent partitioning approaches that improve the efficiency of the PS method. In addition, the

LS-CS problem can be integrated with cut-and-scheduling problems, similar to the research in [7],

[9], and [11]. There are other LS-CS problems in furniture and other practical settings that involve

relevant setup time and costs in the cutting and drilling processes, which are different from the one

studied in this paper. More details on some of these problems can be found in [5]. These problems

are also very difficult to solve and could be interesting topics for future research, for instance, by
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appropriately modifying and applying the present proposed approach.
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