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ABSTRACT 

The present paper summarises a comprehensive 
programme of work on collapse loads of horizontal 
cylindrical saddle supported storage vessels.   A programme 
of tests was conducted on 40 model vessels that included 
both welded and loose saddles.   Different collapse 
behaviours were observed depending largely on the radius to 
thickness ratio of the vessels.   A range of theoretical 
approaches were explored and compared with the 
experimental results.   The best theoretical comparison was 
then used to conduct a parametric survey covering a total of 
218 cases.  The results of the survey have been presented in 
the form of simple design graphs. 
 
 
NOTATION 
 

A Longitudinal distance to the saddle support centre line 
from the end of the cylindrical shell (mm) 

b1 Width of saddle (mm) 
L Barrel length of the vessel (mm) 
LS Longitudinal distance between saddle supports (mm) 
R Mean radius of vessel (mm) 
t Shell thickness of vessel (mm) 
σy Tensile yield strength of shell material (N/mm2) 
2α Saddle embracing angle (degrees or radians) 
P       Parametric collapse load by elastic-plastic 
  analysis (kN) 
Pex Experimental collapse load (kN) 

Pmin Upper bound limit load by limit analysis (kN) 
Pinc Inscribed yield solution by limit analysis (kN) 
Pkrup Krupka's simplified solution by limit analysis (kN) 
Plb Lower bound limit load by elastic compensation 

method (kN) 
Pub Upper bound limit load by elastic compensation 

method (kN) 
 
 

 

 
 
INTRODUCTION 

Horizontal vessels are widely used as storage vessels for 
liquids or gaseous products.   Such vessels are commonly 
supported above ground by twin saddles, Fig 1a.   The 
saddles may be either fitted loosely or welded to the vessel.   
Current design rules tend to limit the maximum stress in the 
saddle region to a particular value or to employ a Design-by-
Analysis approach.  The two approaches differ little in the 
final design. However, in the absence of a fatigue 
requirement it may be appropriate to base the design of the 
vessel on the plastic collapse load of the vessel.   In this way 
the designer can find an allowable load directly from the 
collapse load by dividing by an appropriate factor, usually 
1.5. This has the merit of avoiding the calculation or the 
categorisation of the stresses. 

Plastic collapse loads have been investigated by the 
authors (1,2,3) and by Krupka (4,5,6,7,8) in a range of simple 
experimental tests on end supported steel cylinders loaded 
centrally by an external saddle load, Fig 1b. It was found that 
there are two main modes of collapse, a gradual plastic 
collapse and a more sudden elastic-plastic buckling failure.   
Plastic collapse occurs when the vessel radius to shell 
thickness is relatively small (typically R/t < 200) and is 
characterised by the sequential formation of plastic hinges 
which cause the eventual collapse of the vessel.   The 
formation of plastic hinges is different for saddles which are 
welded to the vessel than for those where the vessel is placed 
loosely on the saddle.  In the case of welded saddles the 
hinges occur at the horns and (usually) on one side of the 
nadir close to the saddle.   Loose saddles, on the other hand, 
have symmetric hinges which form round the periphery of 
the saddle/vessel interface; this ultimately results in a 
localised indentation on the shell surface under the saddle, 
referred to as a ‘foot print’. 
 
EXPERIMENTAL RESULTS 

A typical cylindrical vessel is shown in Figure 1a and 
assumed  to be fluid filled as this represents the worst loading 
case.   The vessel is unstiffened and has two saddle supports 
each with a saddle reaction force of P. If a portion of the 
vessel is isolated and inverted it can be considered to be 
loaded through one saddle with force P as in Figure 1b.   The 



force P can be treated as an applied force which represents 
the specific weights of the liquid and vessel material. The 
ends of the model were supported on saddles. This represents 
a convenient test arrangement. 

The results of a programme of 40 experimental results 
on steel vessels using this inverted configuration, including 
both welded and loose saddles are reported in (1). The 
models covered a range of R/t ratios from 50 to 300 and 
length to radius ratios between 4 to 6. These were brought 
together with other similar experimental results to give a total 
experimental base for comparison of 70 tests. The collapse 
loads are simply the highest load sustained in the test. 
 
THEORETICAL ANALYSES 

The following methods of analyses were used (2) to 
give estimates of the collapse loads for both welded and 
loose saddles. 
a) Rigorous upper bound analysis (9). 
b) As above, with an inscribed yield surface (9). 
c) A simplified upper bound solution (5,6). 
d) An elastic compensation method, lower bound (10,11). 
e) An elastic compensation method, upper bound (10,11). 
f) An elastic-plastic finite element method.    
In the finite element model, for cases d), e) and f), symmetry 
boundary conditions were applied to the longitudinal and 
transverse sections of the geometry to produce a quarter 
model.  The open ends of the model were constrained in the 
circumferential direction but were free to deform in the radial 
direction or rotate in their plane. This is an approximation to 
the experimental boundary conditions (1) where there was a 
degree of radial restraint imposed by thin rings inserted into 
the open ends of the test cylinder. The finite element analyses 
inherent in d) e) and f) above were conducted using ANSYS 
(12). 
 
COMPARISON OF THEORY AND EXPERIMENT 

Typical results for welded saddles are shown in Fig 2 
and for loose saddles in Fig 3.   Various theoretical results are 
also shown in the figures. Two lines have been drawn 
through the experimental results. The solid line covers results 
with R/t ratios that fail by plastic collapse; this shows a rising 
curve with increasing R/t. The dotted line covers regions 
where vessels fail by sudden elastic/plastic buckling; this is a 
gently falling curve as R/t increases.  Although the theoretical 
values are valid only for plastic collapse, results have been 
included throughout the whole range of R/t for completeness.   
This serves to emphasise the transition in the buckling 
behaviour. 

The main observation is that the elastic-plastic finite 
element collapse load gives the best approximation to the 
experimental results. Subsequently, it was decided to use this 
method to conduct a parametric survey on actual vessel 
configurations. 

Essentially the above work assumes that collapse is a 
local phenomenon and a model length of approximately 4R is 
sufficient to avoid interaction effects from the ends of the 
model (3). While these results are useful for comparisons 
between theory and experiment, the values need to be treated 
with care when considering actual vessels. 

PARAMETRIC STUDY 
It will be appreciated that all of the above theoretical 

results are restricted since they either treat the saddle-
supported problem as a local problem, or they have been 
configured to suit the experimental set-up. In order to 
conduct a parametric survey which is appropriate to actual 
vessels, it is necessary to include all of the factors which 
influence the collapse of horizontal vessels supported on twin 
saddle supports: these include, 
(a) the fixture of the saddle and vessel, i.e. welded or loose 
(b) saddle embracing angle (2α) 
(c) saddle width (b1) 
(d) total length of the vessel (L) 
(e) distance of the saddle centre profile from the 

vessel "head" (A) 
Vessels of A/R ratio equal to 0.5, 1.0, 2.0 and 6.0 and 

values of Rα/b1 (where α is in radians) of 2.0, 3.5, 5.0, 7.5 
and 10.0 were examined. Various vessel radii of 130mm, 
500mm, 1000mm and 4000mm were used.   The saddle 
location was restricted to the quarter point on the vessel but 
with the vessel's total length varying from 2R, 4R, 8R and 
24R (representing A/R of 0.5, 1.0, 2.0 and 6.0). The saddle-
embracing angle was restricted to between 120˚ and 150˚. 
The saddle width, saddle embracing angle and the vessel's 
radius were varied to include a range of values of the ratio 
Rα/b1 namely 2, 3.5, 5.0, 7.5 and 10.0.   The thickness of the 
vessels was such that the R/t ratio does not exceed 300 to 
adequately ensure the cases correspond to plastic collapse.  
The material property of the shell is assumed to be elastic-
perfectly plastic with a yield strength of 300N/mm2.   A total 
of 105 vessels with welded saddles and 113 vessels with 
loose saddles were analysed to determine the various collapse 
loads.    

Fig 4 shows some typical results for a welded saddle for 
a fixed value A/R = 1.0.   There is a slight scatter in the 
results due to the combined geometrical parameter involving 
b1/R and R/t.  Results for loose saddles are generally similar 
but tend to be slightly lower for a given geometry.   Other 
values of A/R are given in (3).   The collapse loads reduce as 
A/R increases so that when A/R = 6 the values are 
approximately 1/3 of those shown in Fig 4. 

From the point of view of application in design 
situations, it may be useful to have the parametric results in a 
more directly useable form. Accordingly the best fit curves 
for the data, have been characterised in terms of a simple 
power law of the form, 
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Values of K1 and n are given in Table 1 for the welded saddle 
cases for A/R = 1.0. Values for other A/R ratios are given in 
(3). It is in fact possible to further condense the parametric 
collapse load results by increasing the combination of 
geometric parameters, albeit this results in some additional 
scatter. The results are shown in Figures 5 and 6 for typical 
welded and loose saddle cases against the grouped parameter 
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be shown neatly on one graph. Again these may be fitted 
with a simple power law of the form, 
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for the welded case and  
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for the loose saddle case. The values of K2 and m are given in 
Table 2 for both the welded and loose saddle cases (with the 
values of q identified in Fig. 6 for the loose case). 
 

 
CONCLUDING COMMENTS 

The results of the parametric study are useful tools in 
determining the collapse load of twin saddle supported 
vessels that may fail by plastic collapse. The validity of these 
curves is restricted to vessels supported by saddles with 
embracing angles of 120˚ to 150˚ and to the range of 
parameters covered. It must be emphasised that they are only 
valid for failure by plastic collapse; they are not relevant to 
situations where elastic buckling or fatigue are likely failure 
modes.  

Although the parametric results are for vessels that are 
supported by twin saddles at the quarter points, they may also 
be used for vessels which are not supported at the quarter 
points. A simple approach would be to use the A/R ratio for 
that particular vessel since the distance between the supports 
does not greatly influence the collapse load (3). One must 
ensure that the appropriate load is used in the calculation.    

For the purposes of practical design, one approach 
would be to reduce the collapse load obtained from the 
design curves by a factor, say 1.5, to obtain a working load. 
The total load (fluid and vessel weight) acting on one saddle 
should be less than this working load.  If the total load 
required exceeds the allowable working load, then the design 
and the allowable working load may be achieved by altering 
the vessel/saddle parameters. 
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Table 1. Graph curve-fit constants for  
welded saddle with A/R=1.0 

 
R/b1 K1 n 

10 71.198 1.4604 
7.5 45.598 1.5391 
5 27.737 1.4136 

3.5 16.301 1.4558 
2 7.6067 1.4741 

 
 

Table 2. Graph curve-fit constants for 
 saddle condensed data 

 
 Welded Loose 

A/R K2 m K2 m 
0.5 2.58 1.56 5.07 1.363 
1.0 3.00 1.47 4.89 1.340 
2.0 3.22 1.30 4.25 1.233 
6.0 3.08 1.08 2.66 1.126 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Geometric details of saddle supported vessel and simple test arrangement 
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Figure 2. Collapse Loads for Vessels with Welded Saddles 
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Figure 3. Collapse Loads for Vessels with Loose Saddles 
 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8
 

 
 

 
Figure 4. Collapse Loads for Vessels with Welded Saddles for A/R=1.0 
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Figure 5. Condensed Plot of Collapse Loads for Vessels with Welded Saddles  
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Figure 6. Condensed Plot of Collapse Loads for Vessels with Loose Saddles 
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