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Abstract

This paper is concerned with asymptotical stabilization for a class of delay differential equations, which
undergo Hopf bifurcation at equilibrium as delay increasing. Two types of controllers, continuous-time
and discrete-time delay feedback controllers, are presented. Although discrete-time control problems
have been discussed by several authors, to the best of our knowledge, so few controllers relate to both
delay and sampling period, and the method of Hopf bifurcation has not been seen. Here, we first give
a range of control parameter which ensures the asymptotical stability of equilibrium for the continuous-
time controlled system. And then, for the discrete-time controller we also obtain an efficient control
interval provided that the sampling period is sufficiently small. Meanwhile, we try our best to estimate
a well bound on sampling period and get a more complete conclusion. Finally, the theoretical results are
applied to a physiological system to illustrate the effectiveness of the two controllers.
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1. Introduction

Bifurcation control theory is applied in a wide range of fields. Typical bifurcation control objectives
include delaying the onset of an inherent bifurcation, stabilizing a bifurcation solution or branch, mon-
itoring the multiplicity, amplitude and frequency of more limit cycles emerging from bifurcation, etc.
(see [1] and references therein). By applying bifurcation control theory, Kramer et al. [2] made use of
feedback controllers to a model of human cortical electrical activity and discussed the types of bifurcation
that both produce (subHopf/fold cycle) and destroy the large amplitude, stable oscillations characteristic
of a seizure. In [3], an effective external pancreatic insulin production was introduced into a model of
blood-glucose concentration to control the condition of diabetic patient.
Commonly, continuous-time feedback controllers with or without delays are designed to stabilize some

unstable systems. However, one of disadvantages of continuous-time feedback controllers is that they
require continuous-time state-feedback of systems, which is impossible to achieve in practice. For this
reason, feedback controller based on discrete-time state observation is proposed, which is more realistic
and costs less (see [4]). Differential system with a discrete-time feedback controller can be referred to
as delay differential equations (DDEs) with piecewise constant arguments. This kind of equations can
be regarded as a semi-discretization of DDEs, but its solutions may display a much great variety of
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dynamics. Since the end of the last century, Cooke and Wiener [5], Aftabizadeh, Wiener and Xu [6]
and Györi, Ladas and Pakula [7], started intense investigation on differential equations with piecewise
constant arguments. Recently, Mao initiated the study of stochastic stabilization for some kinds of
continuous-time stochastic differential equations (SDEs) by feedback control based on discrete-time state
observations (see [8, 9, 10, 11]).
To the best of our knowledge, there are two main strategies developed to research the stability

of discrete-time controlled systems (DTCSs). One is an indirect method. Based on the stability of
continuous-time counterpart, the stability of DTCS is obtained by comparing the solutions between
DTCSs and continuous-time controlled systems (CTCSs). The other is a direct method. That is, sta-
bility techniques, such as the Lyapunov method, linear matrix inequalities etc. are straightly used on
DTCSs.
This paper will directly apply the Hopf bifurcation theorem on DTCS to find an asymptotically stable

control parameter range. Nevertheless, the property of the characteristic roots of DTCS is obtained by
utilizing the properties of CTCS. As the result of the introduction of a more parameter–sampling period,
the main difficulty for DTCS is how to choose suitable sampling period such that the Hopf bifurcation
conditions are satisfied. Here more complete analysis of the various situations are done.
More specifically, we focus on a class of unstable DDEs:

x′(t) = −γx(t) + βf(x(t− τ)), t ≥ 0, (1)

in which γ, β > 0 are constants, τ > 0 is the time delay. To asymptotically stabilize (1), we introduce
continuous-time controller a(y(t−τ)−x∗) and discrete-time controller a(y([(t−τ)/h]h)−x∗), respectively.
We mention that in the design of discrete-time controller sampling period h > 0 as well as time delay τ
is included, which are independent of each other. Through analysis of the Hopf bifurcation phenomenon,
an efficient control range of parameter a is determined.
System (1) can stand for many models, for example, the standard Mackey-Glass DDEs:

p′(t) =
βθn

θn + pn(t− τ)
− γp(t)

and

p′(t) =
βθnp(t− τ)

θn + pn(t− τ)
− γp(t),

which were initially introduced as a model of blood generation for patients with leukemia in [12]. Later
the model became popular in chaos theory as a model for producing high-dimensional chaos. In [13], the
survival of red blood cells in animals was described as:

p′(t) = −δp(t) + ρe−γp(t−τ).

In addition, Nicholson’s blowflies model,

N ′(t) = −δN(t) + pN(t− τ)e−aN(t−τ)

proposed by Gurney et al. in [14] is also covered by (1).
Many dynamics about Eq.(1), such as global attractiveness, oscillatory, asymptotic behavior of positive

solutions, bifurcation and global existence of periodic solutions and chaotic behavior, have been researched
sophisticatedly. In [15], Wei analyzed the local stability and the Hopf bifurcation using the basic theories
in functional differential equations.
The purpose of this paper is to construct delay feedback controllers for unstable Eq.(1), so that the

equilibrium can be stabilized. Assumptions that ensure the equilibrium of (1) is unstable and two
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types of delay feedback controllers, the continuous-time controller and the discrete-time controller, are
presented in Section 2. In Section 3, the dynamics of CTCS is studied by applying the Hopf bifurcation
theorem. According to the change of characteristic roots, we get a range of control parameter a which
guarantees the asymptotical stability of the equilibrium. In Section 4, the DTCS is considered. For a
given sufficiently small sampling period h > 0, the stable parameter range is also obtained. We will see
that this range approximates to the one in the CTCS as sampling period shrinks to zero. Moreover,
by the Rouche’s theorem, a bound on sampling period is given provided that the control parameter is
fixed. But the bound is much smaller than the actual bound. Consequently, we try to promote the
bound. Finally, the results are applied to a physiological control system. Some numerical simulations are
illustrated to verify the theoretical results. Therefore, from a mathematical point of view, an auxiliary
treatment plan for chronic granulocytic leukemia is proposed.

2. Assumptions and delay feedback controlled problems

Assumption 1. f ∈ C3(R,R), there is an x∗ and its neighbourhood, denoted by N , such that βf(x∗) =
γx∗, and f(x) 6= 0 for x ∈ N and x 6= x∗.

In [15], under Assumption 1 the author obtained the following dynamics results.

Lemma 1 ([15]). Assume that Assumption 1 holds, then for system (1) we have

(i) If |βf ′(x∗)| < γ, then x = x∗ is asymptotically stable for any τ > 0.

(ii) If βf ′(x∗) < −γ, then x = x∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0.

(iii) If βf ′(x∗) > γ, then x = x∗ is unstable for τ ≥ 0.

(iv) If |βf ′(x∗)| > γ, then Eq.(1) undergoes a Hopf bifurcation at x∗ when τ = τn for n = 0, 1, 2, · · · ,
where

τn =











1√
β2f ′2(x∗)−γ2

[

arccos γ
βf ′(x∗)

+ 2nπ
]

, f ′(x∗) < 0,

1√
β2f ′2(x∗)−γ2

[

− arccos γ
βf ′(x∗)

+ 2(n+ 1)π
]

, f ′(x∗) > 0.

The lemma indicates that there are two unstable cases: (ii) and (iii). Under the condition of (iii), the
introduction of negative feedback controller −c(x(t)− x∗), in which c > 0 and satisfies |βf ′(x∗)| < γ+ c,
can easily asymptotically stabilize system (1). Besides that, when βf ′(x∗) < −γ, system (1) undergoes
a Hopf bifurcation at x∗ as the delay τ increases and crosses the Hopf bifurcation points τk. Thus, for
the main purpose of the paper, an additional assumption is needed.

Assumption 2. βf ′(x∗) < −γ and τ is given in an interval (τp, τp+1] (p ∈ {0, 1, 2, · · · }).
It is well known that linear control is the simplest type, it is natural to design a continuous-time delay

feedback controller a(x(t− τ)− x∗) for (1). Thus, (1) is rewritten as

x′(t) = −γx(t) + βf (x(t− τ)) + a(x(t− τ)− x∗), t ≥ 0, (2)

in which a is the control parameter to be determined so that the solution of (2) is asymptotically stable.
Choosing the delay control, rather than non-delay control a(x(t)−x∗), is based on the following reasons:

• It is more realistic in practice if the control depends on a past state, say x(t − δ), due to a time
lag δ between the time when the observation of the state is made and the time when the feedback
control reaches the system.
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• As a result of a special model of (1) in [16], the non-delay control a(x(t)−x∗) is inefficient whatever
a is.

• It is the large time delay that causes the unstability, so we naturally wonder the delay control
a(x(t− τ)− x∗) may work.

However, in practice, the state is observed only at discrete times, say t0, t1, t2, · · · , rather than
continuous-time observation of the state x(t − τ). For simplicity, let h > 0 be the duration between
two consecutive observations (refer to sampling period), that is, h = tn+1 − tn for any n = 0, 1, 2, · · · .
The CTCS (2) hence becomes DTCS of the form:

y′(t) = −γy(t) + βf (y(t− τ)) + a

(

y

([

t− τ

h

]

h

)

− x∗
)

, t ≥ 0, (3)

where [·] denotes the greatest-integer function. Let Eqs.(2) and (3) as same as (1) have given initial
function φ(t) ∈ C([−τ, 0], R). In fact, Eq.(3) is a functional differential equation with a constant delay
and a bounded variable delay. Indeed, if we define the bounded variable time delay ζ : [0,∞) → [τ, τ+h)
by

ζ(t) =

{

τ for −τ ≤ t− τ < 0,
t− nh for nh ≤ t− τ < (n+ 1)h,

for n = 0, 1, 2, · · · , then Eq.(3) is written as

y′(t) = −γy(t) + βf (y(t− τ)) + a (y (t− ζ(t))− x∗) , t ≥ 0.

It is therefore known that under Assumption 1 Eq.(3) has a unique solution (see [17]) in the following
sense.

Definition 1. A solution of Eq.(3) on [0,∞) is a function y(t) that satisfies the following conditions:

(i) y(t) is continuous on [0,∞).

(ii) The derivative y′(t) exists at each point t ∈ [0,∞), with the possible exception of the points tn ∈
[0,∞), n = 1, 2, · · · , where one-sided derivatives exist.

(iii) Eq.(3) is satisfied on each interval [tn, tn+1) ⊂ [0,∞) with integral endpoints.

3. Estimate for parameter a in continuous-time feedback controlled system

In this section, we will use the Hopf bifurcation theorem to give an effective range of control parameter
a for CTCS (2). By setting z = x− x∗, Eq.(2) is equivalent to

z′(t) = −γ(z(t) + x∗) + βf(z(t− τ) + x∗) + az(t − τ). (4)

Its linear part is
z′(t) = −γz(t) + (βf ′(x∗) + a)z(t − τ).

The characteristic equation is

φ(λ; a) = λ+ γ − (βf ′(x∗) + a)e−λτ = 0. (5)

Now we analyze the trends of the solutions of characteristic equation (5) as parameter a increases.
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Lemma 2. Suppose λ(a) = r(a)±ω(a)i (r > −γ, ω ≥ 0) is the root of characteristic equation (5). Then
r′(a) < 0 iff a < −βf ′(x∗) and r′(a) > 0 iff a ≥ −βf ′(x∗).

Proof. Differentiating the both sides of (5) with respect to a, we have

λ′(a) =
e−λτ

1 + τe−λτ (βf ′(x∗) + a)
.

When a = −βf ′(x∗), the characteristic root is λ = −γ, consequently, λ′(−βf ′(x∗)) = eγτ > 0; When
a 6= −βf ′(x∗), there is

r′(a) = ℜ (λ′(a)) =
1

2

(

λ′(a) + λ̄′(a)
)

=
e−rτ cosωτ + τe−2rτ (βf ′(x∗) + a)

|1 + τe−λτ (βf ′(x∗) + a)|2 , (6)

in which, and in the rest of the paper, ℜ(λ), |λ|, λ̄ designate the real part, the modulus and the complex
conjugate of complex number λ, respectively.
Characteristic root λ = r ± ωi is the root of (5) if and only if

r = −γ + (βf ′(x∗) + a)e−rτ cos τω, (7)

ω = −(βf ′(x∗) + a)e−rτ sin τω. (8)

From (7), there is

cos τω =
(r + γ)erτ

βf ′(x∗) + a
.

Substituting it into (6) gives

r′(a) =
(r + γ) + τe−2rτ (βf ′(x∗) + a)2

|1 + τe−λτ (βf ′(x∗) + a)|2(βf ′(x∗) + a)
.

The numerator is always positive, therefore, r′(a) < 0 iff a < −βf ′(x∗) and r′(a) > 0 iff a ≥ −βf ′(x∗).

The lemma clearly shows that all characteristic roots on the right half-plane will move towards left as
a increases from zero to −βf ′(x∗). Furthermore, the next lemma will give an interval of a such that all
characteristic roots will stay in the left half-plane.

Lemma 3. Let Assumptions 1 and 2 hold. There exists an a∗ ∈ (0,−βf ′(x∗)) such that when a ∈
(a∗,−βf ′(x∗)) all solutions of the characteristic equation (5) have negative real parts.

Proof. On one hand, when a = 0 and τ ∈ (τp, τp+1], according to Lemma 2.2 in [15], we know that (5)
has 2(p+ 1) roots with positive real parts:

λj(0) = rj(0)± ωj(0)i, rj(0) > 0 (j = 0, 1, 2, · · · , p),

and the others have negative real parts. On the other hand, when a = −βf ′(x∗), (5) has a unique
solution λ = −γ < 0.
From Lemma 2, we see that every rj(a) is continuous and monotonically decreasing when a ∈

(0,−βf ′(x∗)). Hence, by the intermediate value theorem, there exist some a∗j ∈ (0,−βf ′(x∗)) such that
rj(a

∗
j ) = 0 and rj(a) < 0 for a ∈ (a∗j ,−βf ′(x∗)). Denote a∗ = max0≤j≤p a

∗
j . Then if a ∈ (a∗,−βf ′(x∗))

all characteristic roots have negative real parts.
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Indeed, {a∗j}pj=0 are Hopf bifurcation points. To determine a∗j we have to find the characteristic roots

on imaginary axis, denoted by λ = ±ωi (ω ≥ 0). It is easy to see that λ = ω0 , 0 is a characteristic root
corresponding to a = a0 , γ − βf ′(x∗). So we only need to consider ω > 0. Characteristic equation (5)
has solutions λ = ±ωi (ω > 0) if and only if the following system of equations holds.

{

γ = (βf ′(x∗) + a) cos τω,

ω = −(βf ′(x∗) + a) sin τω.
(9)

The solutions of system of equations (9) have some useful properties:

(P1) cos τω 6= 0;

(P2) tan τω = −ω/γ;

(P3) γ2 + ω2 = (βf ′(x∗) + a)2;

(P4) γ sin τω + ω cos τω = 0;

(P5) γ cos τω − ω sin τω = βf ′(x∗) + a.

Solving nonlinear equation in (P2), we can obtain a sequence of ω. And then inserting them into any
equation in (9), the corresponding value of a is obtained. In order to determine the location of ω, we
draw the graphs of functions in (P3) in Fig.1. It shows that there is a unique root ωk in each interval
((k − 1/2)π/τ, kπ/τ) for k = 1, 2, · · · , [τ ]. Now we give a strict proof about the assertion.

-π/2τ 0 π/2τ π/τ 3π/2τ 2π/τ 5π/2τ 3π/τ 7π/τ

0

y=tanτω

...
ω0 ω1 ω2 ω3

y=-ω/γ

Figure 1: Distribution of solutions ωk to (P2).

Lemma 4. System of equations (9) has a sequence of solutions (ak, ωk) for k ∈ N. Moreover, there is a
unique ωk in each interval ((k − 1/2)π/τ, kπ/τ) and 0 < a2q−1 < · · · < a3 < a1 < −βf ′(x∗) < a0 < a2 <
· · · < a2q < · · · , in which q ∈ N.

Proof. Define function

H(ω) = tan τω +
ω

γ
, ω > 0.
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For any k = 0, 1, 2, · · · , there is H(kπ/τ) = kπ/τγ ≥ 0 and the following two limits:

lim
ω→(2k+1)π/2τ−

H(ω) = +∞; lim
ω→(2k+1)π/2τ+

H(ω) = −∞.

Meanwhile,

H ′(ω) = τ sec2 τω +
1

γ
> 0, ω 6= (4k + 1)π

2τ
,
(4k + 3)π

2τ
,

means thatH(ω) is strictly monotonically increasing in each interval (kπ/2τ, (k+1)π/2τ). Combining the
above limits, there doesn’t exist solution in each interval (kπ/τ, (k + 1/2)π/τ), and by the intermediate
value theorem, H(ω) has a unique zero ωk+1 ∈ ((k + 1/2)π/τ, (k + 1)π/τ).
It is easy to see that cos τω2k+1 < 0, cos τω2(k+1) > 0. From the first equation of (9), we have

cos τωk =
γ

βf ′(x∗) + ak
. (10)

Thus a2k+1 < −βf ′(x∗) and a2(k+1) > −βf ′(x∗). In view of the monotonicity of tangent function in
(π/2, π), and τ(ω2k+1 − 2kπ/τ), τ(ω2k+3 − 2(k + 1)π/τ) ∈ (π/2, π), there is

tan τ(ω2k+3 −
2(k + 1)π

τ
) = tan τω2k+3 = −ω2k+3

γ
< −ω2k+1

γ
= tan τω2k+1 = tan τ(ω2k+1 −

2kπ

τ
)

and τ(ω2k+3 − 2(k + 1)π/τ) < τ(ω2k+1 − 2kπ/τ). Meanwhile, by the monotonically decreasing property
of cosine function in (π/2, π), there is

cos τω2k+3 = cos τ(ω2k+3 − 2(k + 1)π/τ) > cos τ(ω2k+1 − 2kπ/τ) = cos τω2k+1.

From an arbitrary of k, there is cos τω1 < · · · < cos τω2k+1 < · · · < 0. Substituting ωk in (10), ak
is obtained and · · · < a2k+1 < · · · < a3 < a1 < −βf ′(x∗). In a similar way, we can obtain that
cos τω2 > cos τω4 > · · · > cos τω2(k+1) > · · · > 0 and γ − βf ′(x∗) = a0 < a2 < · · · < a2k < · · · .
Moreover, a2k+1 > 0 as long as ω2k+1 <

√

β2f ′2(x∗)− γ2 by (P3). Hence, there must exist q ∈ N such

that ω2q+1 <
√

β2f ′2(x∗)− γ2 and ω2q+3 >
√

β2f ′2(x∗)− γ2. As a consequence, 0 < a2q+1 < · · · < a3 <
a1 < a0 < · · · < a2k < · · · .
Lemmas 3 and 4, clearly describe the change of characteristic roots λ(a) as a increases from zero to

more than a0 just as shown in Fig.2. We note that for any a > 0, there is

ℜ(λ(a)) ≥ −γ. (11)

Theorem 1. Let Assumptions 1 and 2 hold. Then Eq.(2) undergoes a Hopf bifurcation at x = x∗

when a = ak for k = 1, 2, · · · , and a saddle-node bifurcation when a = a0. Furthermore, there exists a
closed invariant curve when a ∈ [0, a1), and x

∗ is asymptotically stable for a ∈ (a1, a0) and unstable for
a ∈ (a0,+∞).

Proof. From the above analysis we see that there is a pair of conjugated purely imaginary characteristic
roots λ = ±ωki when a = ak. Moreover, transversality condition r′(ak) 6= 0 holds followed by Lemma 2.
Therefore, applying the Hopf bifurcation theorem [18, 19], we prove that a = ak is a Hopf bifurcation
point. Similarly, λ = 0 is a simple root when a = a0 and r′(a0) > 0. Therefore a = a0 is a saddle-node
bifurcation point [18].
Furthermore, from Lemmas 3 and 4, we find a∗ = a1. Hence all characteristic roots have negative

real parts when a ∈ (a1, a0) and there exists at least a characteristic root having positive real part when
a > a0. Thus Eq.(2) is asymptotically stable at x∗ for a ∈ (a1, a0) and unstable for a > a0.

In conclusion, Theorem 1 tells us that CTCS (2) can be asymptotically stabilized if a ∈ (a1, a0).
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Figure 2: The trajectory of a part of characteristic roots as a varies from 0 to −βf ′(x∗) and then more than γ − βf ′(x∗).

4. Stabilization for discrete-time feedback controlled system

This section concerns with the Hopf bifurcation control for DTCS (3). Due to the introduction of
discrete-time controller, we now have two parameters a and h influencing the change of characteristic
roots. So the analysis may be more complicated than the continuous-time case.
By a transformation u(t) = y(t)− x∗, Eq.(3) is equivalent to

u′(t) = −γ(u(t) + x∗) + βf (u(t− τ) + x∗) + au

([

t− τ

h

]

h

)

, t ≥ 0. (12)

Its linear part is

u′(t) = −γu(t) + βf ′(x∗)u(t− τ) + au

([

t− τ

h

]

h

)

, t ≥ 0. (13)

In order to derive its characteristic equation, we suppose that u(t) = eλt is the solution of (13).
Consequently, we can verify from Eq.(13) that when a = γ − βf ′(x∗), λ = 0 is a characteristic root
for any h > 0. Thus, in the rest of the section we need only to consider the condition of λ 6= 0 or
a 6= γ − βf ′(x∗). According to the divisibility between τ and h, we now split two cases to discuss the
characteristic equation for linear part (13) and the asymptotical stabilization of (12).

4.1. The case of τ = mh for a positive integer m

When t ∈ [tn, tn+1), we have [(t− τ)/h]h = (n−m)h. Denoting un = u(tn), then (13) is rewritten as

u′(t) = −γu(t) + βf ′(x∗)u(t− τ) + aun−m, t ∈ [tn, tn+1), n = 0, 1, 2, · · · .

Integrating from tn to t, one obtains

u(t)− un + γ

∫ t

tn

u(s)ds− βf ′(x∗)

∫ t

tn

u(s− τ)ds− aun−m(t− tn) = 0.
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Assume that u(t) = eλt for λ 6= 0 and by the continuity of u(t) as t → tn+1, we get the characteristic
equation

eλh − 1 +
γ

λ
(eλh − 1)− βf ′(x∗)

λ
(eλ(1−m)h − e−λmh)− ae−λmhh = 0,

which is simplified as

ρ1(λ; a, h) = λ+ γ − βf ′(x∗)e−λτ − aλh
e−λτ

eλh − 1
= 0. (14)

We should point that characteristic function ρ1(λ; a, h) has a more parameter h than the characteristic
function φ(λ; a) of CTCS. Therefore, in order to determine the three variables λ, a and h from the
complex equation (14), we need to fix a variable in advance. At first, having noted the following limit,

lim
h→0+

ρ1(λ; a, h) = φ(λ; a), (15)

we naturally thought that whether the characteristic roots of (14) have same change trend as characteristic
roots of (5) for a given sufficiently small h > 0. On the condition that this assertion is correct, whether
there will be purely imaginary characteristic roots ±ωh

k (h)i when a = ahk(h) and the transversality
condition will still hold. Now given sufficiently small h > 0 let us search for the answers.

Lemma 5. For sufficiently small h > 0, characteristic equation (14) has solutions λ̂(a, h) = r̂(a, h) ±
ω̂(a, h)i for a given a > 0. Moreover, limh→0 λ̂(a, h) = λ(a) and limh→0

∂λ̂(a,h)
∂a

= λ′(a).

Proof. The implicit function theorem will be used in the proof, but we notice that function ρ1(λ; a, h)
makes non sense when h = 0 or λ = 0. So we now define the below auxiliary function on D̂ = {(λ, a, h)|λ ∈
C, a ∈ (0,+∞), h ∈ (−∞,+∞)} to complement the values when h = 0 or λ = 0.

ρ̂1(λ, a, h) =







ρ1(λ; a, h), when h 6= 0, λ 6= 0,
φ(λ; a), when h = 0,
γ − βf ′(x∗)− a, when λ = 0.

Then the following three properties hold:

1. From limit in (15) and limλ→0 ρ̂1(λ, a, h) = γ − βf ′(x∗)− a, we can see that ρ̂1(λ, a, h) is analytic
on a neighborhood of (λ(a), a, 0), in which λ(a) = r(a)+ω(a)i is the root of characteristic equation
(5) with any given a > 0 (see Lemma 2). Particularly,

∂ρ̂1(λ, a, 0)

∂h
= lim

h→0

ρ1(λ; a, h)− φ(λ; a)

h
=
λ

2
e−λτa

and
∂ρ̂1(0, a, h)

∂λ
= lim

λ→0

ρ1(λ; a, h)− (γ − βf ′(x∗)− a)

λ
= 1 + βf ′(x∗)τ +

a

2
(h+ 2τ),

imply that ρ̂1(λ, a, h) has continuous partial derivatives on D̂.

2. ρ̂1(λ(a), a, 0) = φ(λ(a); a) = 0.

3. In view of (11),

∂ρ̂1
∂λ

(λ(a), a, 0) =
dφ(λ; a)

dλ
= 1 + τ(βf ′(x∗) + a)e−λ(a)τ = 1 + τ(λ(a) + γ) 6= 0.

Then by the implicit function theorem for complex variables, for any given a > 0 there exist neigh-
borhoods O(a,0) of (a, 0) and Wλ(a) of λ(a) such that there is a unique function λ̂ : O(a,0) → Wλ(a)

satisfying

9



(i) ρ̂1(λ̂(a
h, h), ah, h) = ρ1(λ̂(a

h, h); ah, h) = 0.

(ii) λ̂(a, 0) = λ(a).

(iii) function λ̂(ah, h) has continuous partial derivatives on O(a,0), and

∂λ̂(ah, h)

∂ah
= −

∂ρ̂1
∂ah

(λ(ah), ah, h)
∂ρ̂1
∂λ

(λ(ah), ah, h)
,

∂λ̂(ah, h)

∂h
= −

∂ρ̂1
∂h

(λ(ah), ah, h)
∂ρ̂1
∂λ

(λ(ah), ah, h)
.

We find
∂λ̂(ah, 0)

∂ah
=

e−λ(ah)τ

1 + τ(βf ′(x∗) + ah)e−λ(ah)τ
= λ′(ah),

and
∂λ̂(ah, 0)

∂h
= − λ(ah)ae−λ(ah)τ

2(1 + τ(βf ′(x∗) + ah)e−λ(ah)τ )
.

Finally, in view of the arbitrary of a, ah > 0 we have

λ̂(a, h) = λ(a) +
∂λ̂(a, 0)

∂h
h+O(h2),

and
∂λ̂(a, h)

∂a
=

dλ(a)

da
+O(h).

That is,

lim
h→0

λ̂(a, h) = λ(a) and lim
h→0

∂λ̂(a, h)

∂a
= λ′(a).

For sufficiently small h > 0, λ̂(a, h) is close to ±ωki when a near ak, but Lemma 5 cannot guarantee
that there must exist purely imaginary characteristic roots ±ωh

k i.

Lemma 6. For sufficiently small h > 0, there exist a sequence of {ahk(h)}∞k=0, such that when a = ahk(h)
characteristic equation (14) has purely imaginary roots ±ωh

k (h)i (ω
h
k(h) > 0), and limh→0 ω

h
k(h) = ωk,

limh→0 a
h
k(h) = ak.

Proof. Characteristic equation (14) has purely imaginary roots λ = ±ωh
k i when a = ahk if and only if the

below system of equations holds.






g1(ω
h
k , a

h
k , h) , − cos ωh

k
h−1

ωh

k
h

(γ − βf ′(x∗) cosωh
kτ) +

sinωh

k
h

ωh

k
h
ωh
k +

(

ahk +
sinωh

k
h

ωh

k
h
βf ′(x∗)

)

sinωh
kτ = 0,

g2(ω
h
k , a

h
k , h) ,

sinωh

k
h

ωh

k
h
γ +

cosωh

k
h−1

ωh

k
h

(ωh
k + βf ′(x∗) sinωh

kτ)−
(

ahk +
sinωh

k
h

ωh

k
h
βf ′(x∗)

)

cosωh
kτ = 0.

(16)

Use the implicit function theorem again. Define functions on D = {(ω, a, h)|ω ∈ (−∞,+∞), a ∈
(0,+∞), h ∈ (−∞,+∞)} as

G1(ω, a, h) ,







g1(ω, a, h), when h 6= 0, ω 6= 0,
ω + (βf ′(x∗) + a) sin τω, when h = 0,
0, when ω = 0,

and

G2(ω, a, h) ,







g2(ω, a, h), when h 6= 0, ω 6= 0,
γ − (βf ′(x∗) + a) cos τω, when h = 0,
γ − βf ′(x∗)− a, when ω = 0.

We can verify that the following three conditions hold.

10



1. From (9) and the definitions of G1,2, we calculate that G1(ωki, ak, 0) = ωk+(βf ′(x∗)+ak) sin τωk = 0
and G2(ωki, ak, 0) = γ − (βf ′(x∗) + ak) cos τωk = 0.

2. We see that functions G1,2(ω, a, h) are continuous at D. Furthermore,

∂G1(ω, a, 0)

∂h
= lim

h→0

g1(ω, a, h)− [ω + (βf ′(x∗) + a) sin τω]

h
=
ω

2
(γ − βf ′(x∗) cosωτ),

∂G2(ω, a, 0)

∂h
= lim

h→0

g1(ω, a, h)− [γ − (βf ′(x∗) + a) cos τω]

h
= −ω

2
(ω + βf ′(x∗) sinωτ),

∂G1(0, a, h)

∂ω
= lim

ω→0

g1(ω, a, h)− 0

ω
= 1 + τa +

hγ

2
+ βf ′(x∗)(τ − h

2
),

∂G2(0, a, h)

∂ω
= lim

ω→0

g2(ω, a, h)− γ + βf ′(x∗) + a

ω
= 0,

imply that functions G1,2(ω, a, h) have continuous partial derivatives at D.

3. In addition, the kth Jacobian determinant

Jk =
∂(G1, G2)

∂(ω, a)
(ωk, ak, 0) =

∣

∣

∣

∣

1 + τ(βf ′(x∗) + ak) cos τωk sin τωk

τ(βf ′(x∗) + ak) sin τωk − cos τωk

∣

∣

∣

∣

= − cos τωk − τ(βf ′(x∗) + ak) = − 1

βf ′(x∗) + ak
[γ + τ(βf ′(x∗) + ak)

2] 6= 0.

Then, by implicit function theorem, there exists an open set Uk ⊂ R2 containing (ωk, ak), an open set
Vk ⊂ R containing 0 and unique functions (ωh

k(h), a
h
k(h)) : Vk → Uk which satisfy that:

(i) G1(ω
h
k(h), a

h
k(h), h) = g1(ω

h
k(h), a

h
k(h), h) = 0, G2(ω

h
k(h), a

h
k(h), h) = g2(ω

h
k(h), a

h
k(h), h) = 0.

(ii) ωk = ωh
k(0), ak = ahk(0).

(iii) ωh
k(h) and a

h
k(h) are continuously differentiable on Vk, and

(

dωh

k
(h)

dh
dah

k
(h)

dh

)

= −
(

∂G1

∂ω
∂G1

∂a
∂G2

∂ω
∂G2

∂a

)−1( ∂G1

∂h
∂G2

∂h

)

.

Therefore, we derived that for sufficiently small h > 0 characteristic equation (14) has purely imaginary
roots ±ωh

k(h)i when a = ahk(h). Consequently, the following two Taylor’s expansions hold.

ωh
k(h) = ωk +

dωh
k(0)

dh
h+O(h2) = ωk −

ωkak(βf
′(x∗) + ak)

2[γ + τ(βf ′(x∗) + ak)2]
h+O(h2)

and

ahk(h) = ak +
dahk(0)

dh
h +O(h2) = ak −

ωk(ωk + βf ′(x∗) sinωkτ)(βf
′(x∗) + ak)

2[γ + τ(βf ′(x∗) + ak)2]
h+O(h2).

That is,
lim
h→0

ωh
k(h) = ωk, lim

h→0
ahk(h) = ak.

Remark 1. In particular, from the last Taylor’s expansions of ωh
k(h) and a

h
k(h) in the proof, we can see

that ωh
0 and ah0 convergence to ω0 and a0 with a much high order, which phenomenon can be seen in Tab.

1 in Section 5. For convenience, a0 can be used instead of ah0 in practice.
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Lemma 6 provides the existence of the purely imaginary characteristic roots and Lemma 5 ensures that
the transversality condition holds at these purely imaginary characteristic roots. But before we give the
main theorem, we first certainly find values of the bifurcation points ahk . Dividing by the two equations
in (16), we obtain that

tanωh
kτ =

− tan
ωh

k
h

2
(γ − βf ′(x∗) cosωh

kτ)− (ωh
k + βf ′(x∗) sin τωh

k)

γ − βf ′(x∗) cos τωh
k − tan

ωh

k
h

2
(ωh

k + βf ′(x∗) sinωh
kτ)

= −ωk

γ
+O(h). (17)

Solving Eq.(17), we can get a sequence of ωh
k and then inserting them into (16), ahk will be computed out.

By the illustration of Fig.3, and similar to Lemma 4 we have the following lemma.

-π/2τ 0 π/2τ π/τ 3π/2τ 2π/τ 5π/2τ

0

L
1

L
2

L
3

y=tanτω

......

L
1
: y=-ω/γ

L
2
: y=-ω/γ+O(h)

L
3
: y=-ω/γ+π/γτ

ω
1

ω
1
h

ω
2
h

ω
0
h

ω
0

Figure 3: Distribution of solutions ωh

i
to (16).

Lemma 7. For sufficiently small h = τ/m > 0, system of equations (16) has a sequence of solutions
{(ωh

k , a
h
k)}∞k=0. Moreover, there is unique ωh

0 ∈ (−π/2τ, π/2τ), unique ωh
k ∈ ((k − 1/2)π/τ, kπ/τ) for any

k = 1, 2, · · · , and 0 < ah2q−1 < · · · < ah3 < ah1 < ah0 < ah2 < · · · < ah2q < · · · , in which q ∈ N.

Theorem 2. Let Assumptions 1 and 2 hold. Then for sufficiently small h = τ/m Eq.(3) undergoes a
Hopf bifurcation at x∗ when a = ahk (k = 0, 1, 2, · · · ). Furthermore, there exists a closed invariant curve
when a ∈ [0, ah1), and x

∗ is asymptotically stable for a ∈ (ah1 , a
h
0) and unstable for a ∈ (ah0 ,+∞).

Untill now, we have obtained a result of Hopf bifurcation control for DTCS (3): for a given sufficiently
small h = τ/m, the efficient control range a ∈ (ah1 , a

h
0) is found out from system of equations (16).

However, how small is the h able to satisfy the conclusion? Now we turn to another point of view to find
a bound on h for a fixed a ∈ (a1, a0).

Theorem 3. . Given a ∈ (a1, a0), then there exists an h∗ > 0 satisfying

max
−π≤ω≤π

∣

∣

∣

∣

1− ωh∗i

eωh∗i − 1

∣

∣

∣

∣

<
γ − βf ′(x∗)

a
− 1, (18)

such that when h ∈ (0, h∗), the equilibrium of (3) is asymptotically stable.
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Proof. Define an auxiliary function

ψ(λ) = ae−λτ

(

1− λh

eλh − 1

)

.

Then ρ1(λ) = φ(λ)+ψ(λ). Now we use the Rouche’s Theorem to determine the number of characteristic
roots in the left half plane. By making a transformation ν = eλ, (14) is equivalent to

ρ1(ν) = ln ν + γ − βf ′(x∗)ν−τ − a ln νh
ν−τ

νh − 1
= 0.

So all characteristic roots have negative real parts if and only if all the zero points of ρ1(ν) are in the
unit circle. Furthermore, let ν = eωi for any ω ∈ [−π, π) be on the unit circle, then

φ(eωi) = ωi + γ − (βf ′(x∗) + a)e−ωτ i

and

ψ(eωi) = ae−ωτ i

(

1− ωhi

eωhi − 1

)

.

Therefore, when a ∈ (a1, a0), we have

|φ(eωi)| ≥ γ − (a+ βf ′(x∗)) > 0

and

|ψ(eωi)| = a

∣

∣

∣

∣

1− ωhi

eωhi − 1

∣

∣

∣

∣

.

Since |ψ(eωi)| will convergent to zero when h approaches to zero, there exists an h∗ > 0 satisfying (18)
such that |ψ(eωi)| < |φ(eωi)| for all ω ∈ [−π, π) and h ∈ (0, h∗). Then, by the Rouche’s Theorem, the
sums of the orders of the zeros of ρ(ν) and φ(ν) inside the unit circle are same. Consequently, the sums
of the orders of zeros of ρ(λ) and φ(λ) in the left half plane are same.
In view of Theorem 1, when a ∈ (a1, a0) all zeros of φ(λ) are in the left half plane. Now the same to

the characteristic function ρ1(λ). Thus, the conclusion is proved.

Theorem 3 provides a bound h∗ for sampling period, which guarantees that there exists a valid control
range (a1, a0). That is to say, the efficient control range (a1, a0) can be independent of h provided h < h∗.
As a result of that, the bound is so rigorous that it is smaller than the one in practice. Hence we try to
reestimate a more bound (refer to the simulations in Section 5). For the last time, we turn our study
direction to fix ω, and then solve a and h. Motivated by the result in Lemma 7 there exists a unique
ωh
1 ∈ (π/2τ, π/τ) for sufficiently small h > 0. So we now search for the largest possible value of h.

Theorem 4. Let Assumptions 1 and 2 hold. If 0 < h < h∗∗1 , then characteristic equation (14) has unique
purely imaginary root ωh

1 ∈ (π/2τ, π/τ), in which

h∗∗1 = max
ω∈[π/2τ,π/τ ]

{

2

ω
arctan

(

γ sin τω + ω cos τω

ω sin τω − γ cos τω + βf ′(x∗)

)}

.

Proof. Characteristic equation (14) has purely imaginary roots ±ωi for ω > 0 if and only if there exist
a and h such that ω satisfies (16). We rewrite it again as form,

{

−(γ − βf ′(x∗) cos τω) cosωh−1
ωh

+ (ω + βf ′(x∗) sin τω) sinωh
ωh

= −a sin τω,
(γ − βf ′(x∗) cos τω) sinωh

ωh
+ (ω + βf ′(x∗) sin τω) cosωh−1

ωh
= a cos τω.

(19)
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First to prove sinωh 6= 0 by contradiction, we assume that sinωh = 0. Then there may be cosωh = 1,
thus system of equation (19) is simplified as

−a sin τω = a cos τω = 0,

which is in contradiction with a > 0. Otherwise, cosωh = −1, that is to say, ωh = 2kπ + π for
k = 0, 1, 2, · · · . Consequently, sin τω = sinmhω = sinmπ = 0, cos τω = cosmhπ = cosmπ = ±1 and
the first equation in (19) becomes γ = ±βf ′(x∗), which is contradiction with Assumption 2.
Dividing by the two equations in (19), we have

tan

(

ωh

2

)

=
γ sin τω + ω cos τω

ω sin τω − γ cos τω + βf ′(x∗)
.

Consequently, we solve

h =
2

ω
arctan

(

γ sin τω + ω cos τω

ω sin τω − γ cos τω + βf ′(x∗)

)

+
2kπ

ω
, k = 0, 1, 2, · · · ,

which is continuous in closed interval [π/2τ, π/τ ]. Hence, for k = 0, h must attain a maximum

h∗∗1 = max
ω∈[π/2τ,π/τ ]

{

2

ω
arctan

(

γ sin τω + ω cos τω

ω sin τω − γ cos τω + βf ′(x∗)

)}

. (20)

In view of property (P4), we have h(ω1) = 0 and calculate that

h
(π

τ

)

=
2τ

π
arctan

( −π
τ(γ + βf ′(x∗))

)

> 0.

Therefore h∗∗1 > 0. Using the intermediate value theorem, for any given h ∈ (0, h∗∗1 ), there exists
ωh
1 ∈ (π/2τ, π/τ).

Theorem 4 only gives a necessary condition on h which ensures the existence of ωh
1 ∈ (π/2τ, π/τ), and

the transversality condition needs to be further confirmed. Solving a from Eq.(14) and then inserting
into the partial derivative of λ with respect to a derived by Eq.(14), it yields that

∂λ(a, h)

∂a
=

λ2e−(τ+h)λ

1−e−λh

h
[−γ + βf ′(x∗)e−λτ (τλ+ 1− λτe(τ−h)λ) + (λ2τ + τγλ)e(τ−h)λ] + λ(λ+ γ − βf ′(x∗)e−λτ )

.

We denote the real part by

∆h(a) =
∂(ℜλ(a, h))

∂a
.

Lemma 5 has proved that limh→0
∂λ(a,h)

∂a
= λ′(a), that is, for sufficiently small h > 0, there is ∆h(a)r

′(a) >
0. So we redefine the bound of h as follows:

h∗∗ = max{h ∈ (0, h∗∗1 )|∆h∗∗

2
(a)r′(a) > 0 for all h∗∗2 ∈ (0, h)}.

From the example in Section 5, we will see that h∗∗ is much better than h∗.
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4.2. The case of mh < τ < (m+ 1)h for a positive integer m

In this case,
[

t− τ

h

]

h =

{

(n−m− 1)h, t ∈ [nh, (n−m)h + τ),
(n−m)h, t ∈ [(n−m)h + τ, (n+ 1)h).

Then the linear part of (12) becomes

{

u′(t) = −γu(t) + βf ′(x∗)u(t− τ) + aun−m−1, t ∈ [nh, (n−m)h+ τ).
u′(t) = −γu(t) + βf ′(x∗)u(t− τ) + aun−m, t ∈ [(n−m)h+ τ, (n+ 1)h).

(21)

Integrating (21) from tn to tn+1, it yields that

un+1 − un = −γ
∫ tn+1

tn

u(s)ds+ βf ′(x∗)

∫ tn+1

tn

u(s− τ)ds + a[(τ −mh)un−m−1 + ((m+ 1)h− τ)un−m].

And then letting u(t) = eλt, we obtain the characteristic equation:

ρ2(λ; a, h) = λ+ γ − βf ′(x∗)e−λτ − aλ
e−λmh[(τ −mh)e−λh + (m+ 1)h− τ ]

eλh − 1
= 0. (22)

We also have the limit
lim
h→0

ρ2(λ; a, h) = φ(λ; a).

In a similar manner in subsection 4.1, one can prove that characteristic equation (22) has purely
imaginary roots ±ω̃h

k (h)i (ω̃
h
k(h) > 0) when a = ãhk(h) for k = 0, 1, 2, · · · , and limh→0 ω̃

h
k(h) = ωk,

limh→0 ã
h
k(h) = ak. To avoid the paper becoming too tedious, we only give the results and the detailed

proof is omitted.
Let λ = ±ω̃i (ω̃ ∈ (0, π)) be the solution of characteristic equation (22) and then separating the real

part and the imaginary part, we have

cos ω̃h−1
sin ω̃h

ω̃(1 + aβf ′(x∗) sin ω̃τ) + γ − βf ′(x∗) cos ω̃τ = aω̃
[

cosmω̃h (τ−mh) cos ω̄h+(m+1)h−τ
sin ω̃h

− (τ −mh) sinmω̃h
]

,

cos ω̃h−1
sin ω̃h

(γ − βf ′(x∗) cos ω̃τ)− ω̃ − βf ′(x∗) sin ω̃τ = aω̃
[

sinmω̃h (τ−mh) cos ω̃h+(m+1)h−τ
sin ω̃h

+ (τ −mh) cosmω̃h
]

.

(23)
For a given sufficiently small h > 0, solving this system of equations, we can obtain a sequence of ω̃h

k and
ãhk for k = 0, 1, · · · .

Theorem 5. Let Assumptions 1 and 2 hold. Then for sufficiently small h satisfying mh < τ < (m+1)h,
system (3) undergoes Hopf bifurcation at x∗ when a = ãhk for k = 0, 1, · · · . Furthermore, there exists a
closed invariant curve when a ∈ [0, ãh1), and x

∗ is asymptotically stable for a ∈ (ãh1 , ã
h
0) and unstable for

a ∈ (ãh0 ,+∞).

5. An example

In this section, we apply the obtained results to a physiological system. For convenience, we rewrite
the model again.

ṗ(t) =
βθnp(t− τ)

θn + pn(t− τ)
− γp(t), t ≥ 0, (24)

in which p(t) denotes the density of mature blood cells in circulation at time t, time delay τ > 0 measures
the time between the initial of cellular production in the bone marrow and the release of mature cells into
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the blood. In fact, in normal healthy adults, the circulating levels of granulocytes are either constant or
showing a mild oscillation with a period of 14 to 24 days. Cyclical neutropenia is a disease characterized
by spontaneous oscillations in granulocyte numbers from normal to subnormal levels with a period of
about 21 days. For some patients with chronic granulocytic leukemia (CGL), the circulation granulocyte
numbers display large-amplitude oscillations with period ranging from 30 to 70 days, depending on the
patients. Combining Lemma 1 and medical significant, the dynamics of (24) reflect the fact that, if
the time delay is long enough, then there is no adequate blood cells being released into circulating
bloodstreams, thus the stability of the circulating level is destroyed and even CGL is caused.
In order to control the density of mature blood cells we now give continuous-time and discrete-time

delay feedback blood transfusion controlled systems:

ẋ(t) = −γx(t) + βθnx(t− τ)

θn + xn(t− τ)
+Bã(x(t− τ)− p∗), t > 0, (25)

and

ẏ(t) = −γy(t) + βθny(t− τ)

θn + yn(t− τ)
+Bã

(

y

([

t− τ

h

]

h

)

− p∗
)

, t > 0, (26)

in which p∗ = θ n

√

β/γ − 1 is the equilibrium of (24), B > 0 is the density of mature blood cells in the
blood bag, ã characterizes the speed of transfusion blood, which is the parameter to be estimated.
For computational convenience, we choose the case of τ = mh to simulate the solutions of Eqs.(25)

and (26). Applying the exponential method (see [20]) to (25) and (26), respectively, derives the discrete
approximate schemes:

xn+1 = e−γ∆xn +
β

γ
(1− e−γ∆)f(xn−mq̃) +

a

γ
(1− e−γ∆)(xn−mq̃ − p∗)

and

yn+1 = e−γ∆yn +
β

γ
(1− e−γ∆)f(yn−mq̃) +

a

γ
(1− e−γ∆)(yn−i−mq̃ − p∗).

Here ∆ is the time step size satisfying q̃∆ = h for q̃ ∈ N, n = kmq̃ + jq̃ + i, (k = 0, 1, 2, · · · , j =
0, 1, · · · , m − 1, i = 0, 1, · · · , q̃ − 1), tn = n∆, xn and yn are the approximations of x(tn) and y(tn),
respectively.
In the rest of the section, we choose parameters as: β = 0.2/day, γ = 0.1/day, n = 10, θ = 1.6 ×

1010cells/kg, and the density of mature cells in blood bag B = 1.6 × 1010cells/kg. So the steady-state
circulating levels of granulocytes is p∗ = 1.6 × 1010cells/kg. As a consequence, we have βf ′(x∗) < −γ
and τ0 = arccos(−0.25)/

√
0.15 ≈ 4.7082. We always choose τ = 30 > τ0, step size ∆ = 0.1 and denote

a = Bã.
We start the simulation for uncontrolled system (24). Fig.4 shows that the equilibrium p∗ for (24) is

unstable when τ = 30, which is consistent with Lemma 1.
And then we consider the efficient control range for CTCS (25) and DTCS (26), respectively. Solving

system of equations (9) we get ω1 ≈ 0.0819, a1 ≈ 0.2709, a0 ≈ 0.5. Let us start as a counterexample
in Fig.5 (by choosing h = τ/3 = 10 days, initial condition φ(t) = 1.7 × 1010 cells/kg for t ∈ [−τ, 0]) to
show that if h is more large the continuous-time controller may be valid, nevertheless, the discrete-time
controller may not.
Therefore, it is necessary to ensure the bound on h in advance. In Theorem 3, fixing a = 0.3 we could

find h∗ ≈ 0.415. In practice, the bound may be enlarged. Inserting ω1 into Theorem ?? another bound
on h is h∗∗ = 6.4121 and a1 ∈ (0.2699, 0.3117). Particularly, selecting h = 6, 5, 3, 1.5, 1, 0.5 and solving
system of equations (16), the corresponding valid control interval (ah1 , a

h
0) is found (see Tab.1).
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Figure 4: Numerical solution to Eq.(24) with τ = 30 days and initial condition φ(t) = 1.9 for t ∈ [−τ, 0].
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Figure 5: The ineffective discrete control for a larger h = 10 days and a = 0.3.

Table 1: Solutions of systems of equations (9) and (16) for k = 0, 1.

h ωh
1 ah1 ωh

0 ah0
6 0.1015 0.3000 7.3225e-13 0.5000
5 0.0964 0.2848 1.0372e-12 0.5000
3 0.0896 0.2725 2.0052e-12 0.5000
1.5 0.0855 0.2699 3.1594e-12 0.5000
1 0.0843 0.2699 3.6427e-12 0.5000
0.5 0.0831 0.2702 4.1779e-12 0.5000

continuous-time ω1 a1 ω0 a0
controller 0.0819 0.2709 0 0.5
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According to Theorem 1, when a ∈ (0.2709, 0.5) the equilibrium p∗ of CTCS (25) is asymptotically
stable and when a ∈ (0, 0.2709) ∪ (0.5,+∞) the equilibrium p∗ is unstable. Meanwhile, Theorem 2
guarantees that DTCS (26) is asymptotically stable if a ∈ (ah1 , a

h
0) and unstable if a ∈ (0, ah1)∪ (ah1 ,+∞)

for sufficiently small h.
The following Figs.6-9 show the efficiency of control intervals for CTCS and DTCS at same time by

choosing initial condition φ(t) = 1.9 cells/kg for t ∈ [−τ, 0]. Fig.6 shows that both continuous-time and
discrete-time controllers with h = 5 are invalid for a = 0.26 < a1 (or ah1); and Fig.7 shows that both
two kinds of controllers are efficient for a = 0.285 > a1 (or ah1). On the other hand, choose the initial
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Figure 6: Numerical solutions to Eqs.(25) and (26) with a = 0.26 and h = 5 days.
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Figure 7: Numerical solutions to Eqs.(25) and (26) with a = 0.285 and h = 3 days.

condition φ(t) = 1.7 × 1010 cells/kg for t ∈ [−τ, 0]. Fig.8 shows that the two controllers are efficient for
a = 0.49 < a0 (or ah0); and Fig.9 shows that both controllers don’t work for a = 0.51 > a0 (or ah0).
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Figure 8: Numerical solutions to Eqs.(25) and (26) with a = 0.49 and h = 3 days.
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Figure 9: Numerical solutions to Eqs.(25) and (26) with a = 0.51 and h = 3 days.

6. Conclusion

In the paper, we have shown that unstable DDE (1) can be asymptotically stabilized by both continuous-
time and discrete-time delay feedback controllers. In fact, our emphasis is on the discrete-time controller,
but in the study process we need the property of characteristic equation for continuous-time model. DTC-
S remains asymptotically stable if the CTCS is so and the sampling period is sufficiently small. Moreover,
we also commit ourselves to determining a good bound on sampling period h. Our results can certainly
be generalized to cope with more general form of DTCSs. For example,

x′(t) = f(x(t), x(t− τ)) + a

(

x

([

t− τ

h

]

h

)

− x∗
)

, t ≥ 0.
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[7] I. Györi, G. Ladas, L. Pakula, Conditions for oscillation of difference equations with applications to
equations with piecewise constant arguments, SIAM J. Math. Anal. 22(3)(1991) 769-773.

19



[8] X. Mao, Stabilization of continuous-time hybrid stochastic differetnail eqautions by discrete-time
feedback control, Automatica. 49 (2013) 3677-3681.

[9] S. You, W. Liu, J. Lu, X. Mao, Q. Qiu, Stabilization of hybrid systems by feedback control based
on discrete-time state observations, SIAM J. Control Optim., 53(2015) 905-925.

[10] X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE
Trans. Autom. Control, DOI:10.1109/TAC.2015.2471696.

[11] X. Mao, W. Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid stochastic differential equations by
feedback control based on discrete-time state observations,Syst. Control Lett. 73 (2014) 88-95.

[12] M.C. Mackey, L. Glass, Oscillations and chaos in physiological control systems, Science 197 (1977)
287-289.

[13] M. Wazewska-Czyzewska, A. lasota, Mathematical problems of the dynamics of the red blood cells
system, Ann. Polish Math. Soc.Ser.III, Appl. Math. 17 (1976) 23-40.

[14] W.S. Gurney, S.P. Blythe, R.M. Nisbet, Nicholson’s blowflies (revised), Nature 287 (1980) 17-21.

[15] J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity 20 (2007) 2483-2498.

[16] H. Su, X.H. Ding, W.X. Li, Numerical bifurcation control of Mackey-Glass system, Applied Math-
ematical Modelling 35 (2011) 2460-3472.
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