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ABSTRACT 

Previous experimental work (1) on cylindrical vessels supported at the ends and subjected to 

central loading indicated that different collapse mechanisms could occur when the loading is 

applied either through loosely fitted saddles or through welded saddles.   The modes of 

failure are dependent upon the value of the R/t ratio of the vessel.   In general, progressive 

plastic collapse occurs in vessels with low values of R/t ratio, typically less than 200, and 

elastic-plastic buckling is observed in vessels with higher R/t ratios.   The aim of this paper is 

to examine various theoretical analyses for plastic collapse loads, applicable to vessels with 

low values of R/t ratio, and compare these with the experimental results obtained by the 

authors and others.   The theoretical behaviour appropriate for the thinner vessels, where the 

mode is failure is by buckling, has been previously examined by the authors elsewhere (2) 

although all the experimental values are included here for completeness.   A number of 

classical and numerical analytical methods are employed to obtain the plastic collapse loads.   

Comparisons with the experimental results show that the elastic-plastic finite element 

analysis gives the best agreement.   Further work in the form of a parametric study has been 

conducted on a range of vessels to enable a design method to be established. This is 

published as a companion paper in this volume. 
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NOTATION 

 
b Distance to plastic hinges - see Figure 2. 

b1 Width of saddle (mm) 

L Barrel length of vessel (mm) 

P Load on one saddle (N) 

Pex Experimental collapse load (kN) 

Pmin Upper bound limit load by limit analysis 

Pinc Inscribed yield solution by limit analysis 

Pkrup Krupka's simplified solution by limit analysis 

Plb Lower bound limit load by elastic compensation method 

Pub Upper bound limit load by elastic compensation method 

Pep Elastic-plastic collapse load by finite element analysis 

R Mean radius of vessel (mm) 

s Arc of contact in Krupka's analysis (= 2RĮ) 

t Shell thickness of vessel (mm) 

2Į Saddle embracing angle 

ıy Yield strength of vessel material (N/mm
2
) 

ıR Maximum nodal stress (N/mm
2
) 

 

 

 

1   INTRODUCTION 
 

Horizontal vessels are widely used as storage vessels for liquids or gaseous products.   These 

vessels are commonly supported above ground by twin saddles, which are either fitted 

loosely or welded on to the vessel, Fig 1a.   Present design rules as given by the British 

Standard PD 5500 (3) limits the maximum stress in the saddle support region of the vessel to 

1.25 times the design stress, that is typically a stress of 0.83ıy.    If a more detailed analysis is 

used to obtain the vessel stresses, then a 'Design-by-Analysis' approach, as outlined in Annex 

A of PD 5500, may be employed.   In this case, the maximum value of primary plus 

secondary stress intensity is limited to twice the yield stress (2ıy) or three times the design 

stress at the design temperature.   From this it would appear that the 'Design-by-Analysis' 

approach permits of a higher value of the total vessel and contents weight.   However, the 

maximum stress in the saddle horn region, as derived from PD 5500, is about half the 

corresponding stress derived using a more rigorous analysis (4).   When the two stress levels 

are compared with their respective allowables, the difference between the two approaches is 

relatively small.   There is, of course, much in favour of the rigorous approach when it comes 

to deriving an accurate value of the stresses in the vessel, as required for a fatigue 

assessment, as shown in Ref. (5).    

 

Experience indicates that the present PD 5000 design rule and the 'Design-by-Analysis' 

approach, both underestimate the carrying capacity of the vessel since the stresses referred to 

above are highly localised in the region of the saddle horns, while the rest of the vessel is 

only moderately stressed.   In addition even when a plastic hinge is created in the high stress 

region at the saddle horn, this alone does not create a collapse mechanism;  the vessel will 

still be capable of sustaining further load.   In the absence of fatigue it could be appropriate to 

base the design of the vessel on plastic analysis and the plastic collapse load of the vessel.  

This approach provides the designer with a method of finding an allowable load directly 



 

from the collapse load, by dividing the collapse load by an appropriate factor, usually 1.5.   It 

also avoids the necessity of categorising the stresses as required by the 'Design-by-Analysis' 

approach. 

 

Plastic collapse loads have been investigated by the authors and by others in a range of 

experimental tests on end supported cylinders loaded centrally by an external saddle load, 

Fig 1b.  The end supported cylinder model has been found to be a useful simplification for 

the study of a twin saddle supported horizontal vessel.  Experimental work of the authors is 

reported in previous paper (1) where it was found that there are two main modes of collapse, 

a gradual plastic collapse and a more sudden elastic-plastic buckling failure.   Plastic collapse 

occurs when the vessel radius to shell thickness is relatively small (typically R/t < 200) and is 

characterised by the sequential formation of plastic hinges which cause the eventual collapse 

of the vessel.   The formation of plastic hinges is different for saddles which are welded to 

the vessel than for those where the vessel is placed loosely on the saddle.  In the case of 

welded saddles the hinges occur at the horns and (usually) on one side of the nadir close to 

the saddle.   Loose saddles, on the other hand, have symmetric hinges which form round the 

periphery of the saddle/vessel interface;  this ultimately results in a localised indentation on 

the shell surface under the saddle, referred to as a 'foot print'. 

 

Previous authors, Tooth & Jones (6) and Krupka (7,8) have examined the collapse 

mechanism of loose and welded saddles and obtained equations to calculate the limit loads.   

In the case of Ref. (6), these equations have been derived for a rigorous upper bound limit 

analysis and inscribed yield solution and in Ref. (7) for a simplified yield equation.   In 

addition to the classical limit analysis approach, finite element analysis has been employed to 

determine the collapse load using two different approaches namely, the "elastic 

compensation" method and the more conventional elastic-plastic routine.   The "elastic 

compensation" method is a systematic procedure, developed by Mackenzie & Boyle (9,10) 

for estimating upper and lower bound limit loads.   The method was developed from reduced 

modulus stress categorisation analysis in which the elastic modulus of the material is 

systematically reduced in regions of high stress and increased in regions of low stress.   The 

net effect of this procedure is that the maximum stress will reduce and converge in 

subsequent iterations.   This converged stress is a function of the limit load and thus lower 

and upper bound solutions can be obtained.   The elastic-plastic method is a conventional 

non-linear analysis based on the plastic properties of the material used to determine the 

collapse load.   This present paper examines these six different methods to obtain theoretical 

collapse loads and compare the predictions with those obtained from the experimental 

vessels. 

 

 

2 EXPERIMENTAL RESULTS 

 
 

A typical cylindrical vessel is shown in Figure 1(a) and assumed to be fluid filled as this 

represents the worst loading case.   The vessel is unstiffened and has two saddle supports 

each with a saddle reaction force of P.  If a portion of the vessel is isolated and inverted it 

can be considered to be loaded through one saddle with force P as in Figure 1(b).   The force 

P can then be treated as an applied force, which represents half the total load. This represents 

a convenient test arrangement. 

 



 

The present authors have reported the results of a programme of 40 experimental results, 

including both welded and loose saddles. Details of the test setup are given in Ref (1).   

These have been brought together with other similar experimental results to give a total 

experimental base for comparison of 70 tests.   The main geometric features of the vessels 

are summarised in Tables 1 and 2.   A range of saddle angles from 14.4º to 180º and R/t 

ratios from 23 to 457 are covered.   Vessels 1 to 20 and 31 to 50 are from (1).   Vessels 21 to 

24 and 51,52 are from (6);  vessels 25 to 30 and 56 to 66 are from Krupka (7,8);  vessels 53 

to 55 are from Wilson & Olsen (11) and vessels 67 to 70 are from White (12).   The 

experimental collapse loads for the welded and loose saddles are listed in Tables 3 and 4, 

respectively.   The collapse loads are simply the highest load sustained in the test. 

 

3 RIGOROUS UPPER BOUND ANALYSIS 

 

The rigorous upper bound analysis is based on the work of Tooth & Jones (6) which uses an 

upper bound limit analysis with a kinematically admissible velocity or displacement field.   

The material is idealised as rigid plastic and no allowances are made for the cylinder length 

or the effects of the ends.  The postulated collapse mechanism is shown in Figure 2.   This 

consists of three continuous shell regions I, II, and III and plastic hinges in the axial and 

circumferential directions together with an inclined hinge DE.   The regions are symmetrical 

and only the quadrant OJEG is considered in the analysis.  The derivations can be found in 

(6) and only the final limit equations are presented here. 

 

3.1   Vessels with welded saddles 
 

From (6) for welded saddles the upper bound limit load, Pmin is found to be: 
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The hinge distance, b, can be found through an iterative process from, 
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Theoretical values of Pmin corresponding to the vessels in Table 1 are listed in Table 3. 

 

3.2   Vessels with loose saddles 
 

Similarly for loose saddles, the upper bound limit load is: 
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The hinge distance, b, can be found as before through an iterative process from: 
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Theoretical values of Pmin for the vessels with loose saddles are listed in Table 4. 

 

3.3   Comparisons with experimental results 
 

The upper bound collapse loads (upper bound limit loads) can be compared directly with the 

experimental results. The comparisons show that the rigorous upper bound approach gives 

loads which are too high for welded saddles.   In many cases it predicts limit values of twice 

(or more than twice) the experimental collapse load.   The comparisons of loose saddle cases 

also show predicted upper bound loads which are greater than the experimental results 

although the differences are not so great as for the welded saddles.   For high R/t and small 

saddle angles the predictions were again more than twice the experimental values.   However 

it should be borne in mind that for the higher R/t elastic buckling tends to intervene (1,2) 

giving lower experimental values than expected from plastic collapse considerations. 

 

 

4    INSCRIBED YIELD SURFACE 
 

Use of an inscribed yield surface is a well known way of reducing the estimates given by a 

rigorous upper bound approach.   This tends to predict limit loads that are smaller than the 

upper bound limit loads and indeed smaller than the exact solution.   The approximations to 

the inscribed yield surface used here are as proposed by Robinson (13).   As with the upper 

bound case, only the final limit equation is presented.   Further information of the derivation 

of the limit solutions can be found in (6). 
 

4.1   Vessels with welded saddles 
 

The inscribed yield surface limit load Pinc is given as: 
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The limiting equation used to obtain the hinge distance, b, is given by: 
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Again equations (5) and (6) are valid for b << R and 
2

π
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Predicted values of Pinc are included in Table 3. 

 

4.2   Vessels with loose saddles 
 

The inscribed yield surface limit load for loose saddles is given by: 
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The equation for the hinge distance b is given by: 
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with the same geometric range of validity as for the welded saddle.  

Again calculated values for the vessels with loose saddles are given in Table 4. 
 

4.3  Comparison with experimental results 
 

A comparison of the inscribed yield surface limit loads (Pinc) with the experimental collapse 

results and the upper bound analysis can be made from Tables 3 and 4.   As expected it 

generally gives a lower value compared with the upper bound analysis.   Comparing the 

welded saddles, the inscribed yield solution gives loads which are roughly comparable to the 

experimental.   For vessels with R/t between 80 and 217 and saddle embracing angles 

between 120º and 150º, the inscribed yield load is typically within ± 20% of the collapse 

load.   For vessels with R/t ratios of 217 or greater, the inscribed yield load could be as high 

as two or three times the experimental collapse load.   However, it should be noted as 

previously that in these cases, the experimental vessels tend to exhibit elastic buckling 

behaviour and the plastic limit analysis may be irrelevant.   For vessels with R/t < 217 and 

2Į, < 120º, the inscribed yield surface limit load was higher by between 30 and 60%.   For 

vessels with R/t of 80 or less and saddle angles between 120º and 150º, the inscribed yield 

load was lower than the experimental by up to about 25% (six cases). 

 

The comparison with loose saddles shows that the inscribed yield surface limit loads were 

generally lower (15%-100%) than the experimental collapse load with nine exceptions.   

These exceptions were again because the R/t ratio was rather high (R/t=457 in one case) or 

the saddle angles were small, less than 60º.   Compared with the earlier upper bound limit 

load, the inscribed yield load for loose saddles seems less satisfactory. 

 

 



 

 

 

 

5   SIMPLIFIED UPPER BOUND SOLUTION 
 

Krupka (7,8) proposed a simplified upper bound solution to the collapse load of saddle 

supported vessels.   The postulated mechanism consisted of a pair of parallel plastic hinges 

on each side of the saddle.   Only the shell region under the saddle and the parallel hinges are 

considered.   His analysis assumes that the saddle moves vertically with only radial shell 

movement in the collapse mechanism.   The solution only applies for vessels with loose 

saddles.   Strictly speaking, the mechanism is not kinematically admissible.   However 

Krupka's simplified upper bound load, termed Pkrup, was given as: 
 

R

t
stP ykrup σ= 2  

 

where s in Krupka's formulation is 2RĮ. 

 

5.1    Comparison with experimental results 
 

The comparison of Krupka's simplified equation with the experimental results is also shown 

in Tables 3 & 4.   For completeness his solution is also compared with the welded saddles 

despite the above criticism.   The comparison with the welded saddles (Table 3) show that his 

analysis underestimates the collapse load for almost all welded saddles, usually by a factor of 

two or three.   However, loose saddles show a rather good correlation between his analysis 

and the collapse results.   In most cases, the predicted limit loads vary by about ± 15%.   For 

the larger R/t ratios the predicted loads tended to be high as expected.   In the one case 

(Vessel No. 70) where the saddle embracing angle was very small, the limit load was less 

than half the experimental. 

 

Broadly the comparison of the above analytical limit loads and the experimental collapse 

load show that the inscribed yield surface load method is reasonable for vessels with welded 

saddles and Krupka's simplified limit load is reasonable for loose saddles.   Both solutions 

predict rather high limit loads for high R/t ratios (R/t >217 for the welded case and R/t>329 

for the loose case), due no doubt to the onset of elastic buckling failure in the experiments. 

 

 

6   ELASTIC COMPENSATION METHOD 
 

Finite element methods will now be investigated.   Two methods will be used, the first of 

these being the elastic compensation method. 

 

The object of the elastic compensation method is to establish an appropriate stress field 

suitable for substitution into the lower bound limit analysis theorem.    This is accomplished 

by systematically modifying the local elastic modulus in a finite element model so as to 

cause the stress to redistribute.   As the iterations are linear elastic, this avoids problems of 

excessive computing times and memory.   The method was developed by Mackenzie & 

Boyle (9) and has been successfully used for a variety of pressure vessel-type applications 

(10).   Initially a conventional elastic finite element analysis is performed for an arbitrary 

load set, P, and a stress field obtained.   This initial homogenous (i.e. the elastic modulus is 

the same for every element) isotropic solution is then taken as iteration zero in a series of 



 

linear elastic analyses, in which the elastic modulus of each element is modified according to 

an expression of the form: 
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 where  i  = the iteration number 

  ın = a nominal stress 

  ı(i-1) = the maximum (non-averaged nodal effective stress (von Mises)) 

      associated with the element calculated in the previous iteration. 
 

This iterative procedure redistributes the stress in the component and over a number of 

iterations the nett effect is to decrease the maximum stress in the model to a convergent 

value.   As the iterative solutions are linear elastic, the stress magnitude is proportional to the 

applied load.   A lower bound limit load can then be calculated by invoking the lower 

bound limit load theorem.   The lower bound load is established by calculating the load 

required to make the maximum (non-averaged) nodal stress equal to ıy from simple 

proportionality.   Considering the iteration giving the lowest value of maximum nodal stress 

as ıR, the limit load for a given load set P is: 
 

R

y

lb PP
σ
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where Plb is the best estimate of the limit load. 
 

The upper bound limit load can also be calculated from the converged iteration by 

comparing the strain energy (U) and the energy dissipation (D) in the deformed model.   The 

upper bound limit load is proportional to the load set and is given as: 
 

P
U

D
Pub =  ... (11) 

 

where P is the load set and Pub is the upper bound limit load The finite element package used 

throughout was ANSYS.  The procedures required to obtain the limit loads from this package 

can be performed fairly routinely using ANSYS Design Parametric Language (ADPL) 

macros.   These macros were originally written in the Department of Mechanical Engineering 

in the University of Strathclyde (14). 

 

6.1   Elastic compensation method - welded saddles 
 

The finite element model used for all reported analytical results employing the elastic 

compensation routine was constructed using 652 8-noded brick element with 3 elements 

through the thickness.   The geometrical representation was generated by intersecting a 

cylindrical vessel with a centrally located welded saddle, i.e. as per the end-supported 

inverted model.   In view of the symmetry in the longitudinal and transverse directions of the 

geometry and the applied loading, a quarter model of the full experimental vessel was 

modelled with symmetry boundary conditions.   The open ends of the model were 

constrained in the circumferential direction but were free to deform in the radial direction or 

rotate in their plane. This is an approximation to the experimental boundary conditions (1) 

where there a degree of radial restraint imposed by thin rings inserted into the open ends of 

the test cylinder.  The edges of the saddle are "welded" to the vessel by merging the nodes at 

the boundary of the vessel/saddle interface.   The nodes located within the interface region 



 

were not merged.  Finer meshes were created near the saddle and vessel contact area where 

high stress gradients were expected in regions of uniform stress with a coarse mesh away 

from the saddle. 

 

The set load, P, was applied as a pressure load on the saddle base.   Elastic compensation was 

performed over 9 iterations which ensured convergence.   The equations (10) and (11) were 

then used to evaluate the lower and upper bound limit loads.   The resulting limit loads are 

tabulated in Table 3 as Plb and Pub, respectively. 

 

6.2   Elastic compensation method - loose saddles 
 

Vessels with loose saddles were treated in a similar way to the welded saddle cases.   They 

differ in only one major aspect.   With the loose saddles, there is a difficulty in correctly 

modelling the saddle interface reaction between the saddle and vessel.   Although contact 

elements exist in the ANSYS formulation, they cannot easily be used with the elastic 

compensation method since, when the elastic modulus of the elements are increased, the rate 

of convergence of the contact elements decreases.   Hence they do not converge readily to the 

required solution.   The approach used here was to treat the saddle and vessel as two separate 

entities.   Reaction forces from the saddle can be applied directly on the vessel and the elastic 

modulus of the elements in the vessel can then be reduced in the usual way.   The reaction or 

interface forces can be obtained using an elastic shell analysis approach.   This approach 

makes use of a computer program, "SADDLE", developed in the University of Strathclyde as 

reported by Ong (15) and validated by Tooth et al. (4).   The program provides a series of 

radial interface pressures by assuming that (a) the interface is frictionless so that only radial 

interface forces are present and (b) the interface force is a pressure acting on a patch whose 

width is the width of the saddle.   This means that constant interface force is assumed across 

the width of the saddle.   It is further assumed that the magnitude of the interface forces is 

based on elastic analysis and does not change in subsequent iterations. 

 

The resulting interface pressures effectively supply the loading to the cylinder and the elastic 

compensation method can then be applied as described above.   The resulting lower and 

upper bound limit loads for the loose saddles are tabulated in Table 4. 

 

 

7   ELASTIC-PLASTIC F.E. METHOD 
 

The elastic-plastic method in finite element analysis is a useful tool in plastic analysis as it 

gives a collapse load which can be compared with classical limit loads.   The disadvantages 

are the increased computing time and memory requirements. The F.E. model used was 

similar to that employed for the elastic compensation model in so far as a quarter of the 

experimental end supported vessel was modelled and the same symmetry boundary 

conditions were applied.   8-noded brick elements were used to model the saddle and 4-

noded shell elements for the shell for both welded and loose saddle vessels giving a total of 

254 elements.   Convergence studies were undertaken and this arrangement proved adequate 

with respect to accuracy and efficiency of computer run time.   In welded saddles, the nodes 

around the edges of the saddle and vessel interface were merged together as before to 

simulate a weld.   The nodes under the saddle were not merged.   For loose saddles however, 

point-to-point contact elements were used at all the nodes of the saddle and vessel interface.   

These contact nodes represents two surfaces which may maintain or break physical contact 



 

and may slide relative to each other.   The contact element is only capable of supporting 

compression in the radial direction and shear in the circumferential directions. 

 

The vessel was stressed incrementally through a pressure acting on the saddle's base.   A 

large deflection analysis was performed and an elastic perfectly plastic constitutive 

relationship was assumed for the material behaviour.   The twice elastic slope method was 

used as a basis of obtaining the collapse load.   This was obtained from a graph plotting the 

applied total load on the saddle and the vertical displacement of a node on the top (i.e. the 

base) of the saddle. 

 

The results for the elastic-plastic analysis for the welded and loose saddle cases are included 

in tables 3 and 4, respectively. 

 

 

8   COMMENTS ON THE ELASTIC COMPENSATION AND THE ELASTIC- 

     PLASTIC METHODS 

 
 

A comparison of the elastic compensation, the elastic-plastic and the experimental collapse 

load results can be made from Tables 3 & 4.   For the welded saddles (Table 3) it is evident 

that for the elastic compensation method the upper bound limit loads (Pub) are twice those of 

the lower bound (Plb).   The experimental collapse loads are generally within the upper and 

lower bound limits but are usually closer to the lower bound values except in cases where 

elastic buckling tends to intervene, i.e. high R/t values as in Vessels Nos. 1, 2, 8 & 9, 15, 16, 

17, 27 & 28.   In cases where the radius of the cylinder was 200mm, the experimental 

collapse loads were all almost lower than the lower bound limit loads (Vessel Nos. 15 to 19).   

The elastic-plastic comparisons with the experimental collapse results show that the elastic-

plastic load are usually closer to the experimental results except when elastic buckling occurs 

(see above). 

 

General comments on the loose saddle cases are more difficult to make as the collapse results 

are more scattered.   However, the elastic compensation results show that the upper bound 

limit loads are generally (but not uniformly) 50% higher than the lower bound load.   The 

experimental collapse results tend to be closer to the upper bound limit but are not bounded 

by Pub.   The elastic-plastic results show a similar trend with the welded case, i.e. the results 

are generally in better agreement with the experimental results.   The exceptions again are 

where elastic buckling seems to occur (Vessel Nos. 31, 38, 45, 58 & 59), whereupon the 

experimental collapse loads are lower than the elastic-plastic load. 

 

 9   COMPARISON OF ALL THEORETICAL RESULTS WITH SELECTED  

      EXPERIMENTS 

 

An attempt has been made to show the results graphically in Figures 3 to 8.   Figures 3, 4 and 

5 give both theoretical results and experiments for the welded saddle cases and Figures 6, 7 

and 8 the corresponding results for the loose saddle cases.   The graphs show non-

dimensional collapse loads plotted against R/t for three different geometries.   The 

experimental results have been restricted to the series of tests conducted by the authors since 

these form a consistent set and fit within the three geometrical groups.   The other results in 

Tables 3 and 4 may be compared individually with the various theories but do not form 

sufficiently large groups to provide meaningful graphs. 



 

 

The discontinuity in the trend of the experimental results is evident;  this has been discussed 

at some length in (1).   Essentially the dotted line refers to the onset of elastic or elastic-

plastic buckling.   Obviously the theoretical results are all for plastic collapse type failure and 

should not be compared with the experiments beyond the cusp in the experimental line.   

Similarly, as has already been mentioned, some of the other experimental results in Tables 3 

and 4, not plotted here, are also for high R/t and likely to be influenced by elastic buckling 

behaviour.   For a given geometry it is not simple to predict when elastic buckling may 

intervene so the theoretical results have been shown for a wider range of R/t than that 

covered by the plastic collapse results in the authors' series. 

 

A number of interesting trends can be detected, in particular between the welded and loose 

saddle cases, some of which have been mentioned earlier.   However the main observation is 

that the elastic-plastic collapse load gives the best approximation to the experimental results.   

Figures 9 and 10 show the ratio of the experimental collapse load to theoretical collapse load, 

again plotted against R/t over the range 0 < R/t < 220.   In this case all test results from 

Tables 3 & 4 in the range have been included.   Accordingly this increases the scatter but it 

still  emphasises the good agreement with the elastic-plastic result.   Note that in this case the 

symbol for Pep has been changed to an infilled black circle for clarity. 

 

10    CONCLUDING COMMENTS 
 

This paper seeks to compare theoretical limit load approaches and various finite element-

based methods with experimental collapse results for the simplified case of an end supported 

cylinder loaded centrally by a welded or loose saddle. These results should be useful in the 

context of twin saddle supported horizontal vessels.  The limit load approaches are restricted 

since they treat the saddle-supported problem as a local problem and do not include the effect 

of the length of the vessel. It is partly for these reasons and in anticipation of design 

requirements that finite element methods were also examined. 

 

The elastic compensation method as employed here does not compare as well as the elastic-

plastic analysis; the range which result from the lower and upper bounds is too large (100% 

for the welded and 50% for the loose saddles).    Also the comparison with the experimental 

collapse results differ markedly with the type of saddle.   The elastic compensation lower 

bound compares well with the welded saddles while the upper bound prediction compares 

well with the loose saddles.   This latter may be due to the assumption of using a set of radial 

pressures as the loading on the vessel.   In reality, this set of forces is likely to redistribute 

with the changing stiffness of the shell.   However the main conclusion is that the elastic-

plastic method has proved viable as a tool in computing the collapse load and this method 

gives predictions which are comparable to the experimental collapse loads.   A companion 

paper will use the elastic-plastic method to generate a parameter study. 
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Table 1. Vessels with welded saddles 

 

Vessel 

No. 

Mean 

Radius 

R (mm) 

Wall 

Thicknesses 

t (mm) 

Saddle 

Angle 

2Į(º) 

Vessel 

Length  

L (mm) 

Saddle 

Width 

b1 (mm) 

Yield  

Stress 

ıy (N/mm2) 

 

 

R/t 

 1  130  0.437  120  555  10  331.8  297.5 

 2  130  0.600  120  555  10  153.3  216.7 

 3  130  0.750  120  555  10  175.8  173.3 

 4  130  0.970  120  555  10  160.5  134.0 

 5  130  1.220  120  555  10  222.2  106.6 

 6  130  1.570  120  555  10  222.2  82.8 

 7  130  2.080  120  555  10  214.0  62.5 

 8  130  0.437  150  555  10  331.8  297.5 

 9  130  0.607  150  555  10  275.6  214.2 

 10  130  0.794  150  555  10  186.6  163.7 

 11  130  0.970  150  555  10  160.5  134.0 

 12  130  1.246  150  555  10  174.6  104.3 

 13  130  1.471  150  555  10  250.8  88.4 

 14  130  2.080  150  555  10  214.0  62.5 

 15  200  0.437  120  835  10  331.8  457.7 

 16  200  0.607  120  835  10  275.6  329.5 

 17  200  0.794  120  835  10  186.6  251.9 

 18  200  0.970  120  835  10  160.5  206.2 

 19  200  1.246  120  835  10  174.6  160.5 

 20  200  1.471  120  835  10  250.8  136.0 

 21  229  2.790  150  1220  25.4  267.0  82.1 

 22  229  2.840  150  1220  25.4  267.0  80.6 

 23  229  2.740  150  1220  25.4  267.0  83.6 

 24  457  9.530  80  4190  381.0  207.0  47.9 

 25  65  0.300  120  236  4.5  300.0  216.7 

 26  65  0.300  120  236  4.5  300.0  216.7 

 27  65  0.300  60  236  20.0  300.0  216.7 

 28  65  0.300  60  236  20.0  300.0  216.7 

 29a   807.5  5.000  74  3360  120.0  260.0  161.5 

 30a  807.5  5.000  74  3360  120.0  260.0  161.5 
 

a
Saddle offset at 760mm 

 Vessels 21 to 24 were reported by Tooth & Jones (6);  

 Vessels 25 to 30 were reported by Krupka (7,8) 

 

 



 

Table 2. Vessels with loose saddles 

 
 

Vessel 

No. 

Mean 

Radius 

R (mm) 

Wall 

Thicknesses 

t (mm) 

Saddle 

Angle 

2Į(º) 

Vessel 

Length  

L (mm) 

Saddle 

Width 

b1 (mm) 

Yield  

Stress 

ıy (N/mm2) 

 

 

R/t 

 31  130  0.437  120  555  10  331.8  297.5 

 32  130  0.600  120  555  10  275.0  216.7 

 33  130  0.850  120  555  10  275.0  152.9 

 34  130  0.970  120  555  10  160.5  134.0 

 35  130  1.130  120  555  10  275.0  115.0 

 36  130  1.550  120  555  10  275.0  83.9 

 37  130  2.080  120  555  10  214.0  62.5 

 38  130  0.437  150  555  10  331.8  297.5 

 39  130  0.607  150  555  10  275.6  214.2 

 40  130  0.794  150  555  10  186.6  163.7 

 41  130  0.970  150  555  10  160.5  134.0 

 42  130  1.246  150  555  10  174.6  104.3 

 43  130  1.471  150  555  10  250.8  88.4 

 44  130  2.080  150  555  10  214.0  62.5 

 45  200  0.437  120  835  10  331.8  457.7 

 46  200  0.607  120  835  10  275.6  329.5 

 47  200  0.794  120  835  10  186.6  251.9 

 48  200  0.970  120  835  10  160.5  206.2 

 49  200  1.246  120  835  10  174.6  160.5 

 50  200  1.471  120  835  10  250.8  136.0 

 51  229  3.050  150  1220  25.4  267.0  75.1 

 52  229  2.740  150  1220  25.4  267.0  83.6 

 53  381  6.350  180  3048  63.5  276.0  60.0 

 54  381  6.350  120  3048  63.5  276.0  60.0 

 55  381  6.350  90  3048  63.5  276.0  60.0 

 56  65  0.300  120  236  4.5  300.0  216.7 

 57  65  0.300  60  236  20.0  300.0  216.7 

 58  65  0.300  120  236  4.5  300.0  216.7 

 59  65  0.300  60  236  20.0  300.0  216.7 

 60  807.5  5.000  90  7500  120.0  240.0  161.5 

 61  807.5  5.000  90  7500  120.0  240.0  161.5 

 62  807.5  5.000  90  7500  900.0  240.0  161.5 

 63  807.5  5.000  90  7500  120.0  240.0  161.5 

 64  807.5  5.000  90  7500  120.0  240.0  161.5 

 65  807.5  5.000  90  7500  120.0  240.0  161.5 

 66  807.5  5.000  74  7500  120.0  240.0  161.5 

 67  49.7  2.110  29  227  12.7  459.0  23.3 

 68  49.7  2.110  44  227  12.7  459.0  23.3 

 69  49.7  2.110  60  227  12.7  459.0  23.3 

 70  49.7  2.110  14.4  227  12.7  459.0  23.3 

Vessels 30 to 50 were tested by the authors; Vessels 51 to 52 were reported by Tooth & 

Jones (6); Vessels 53 to 55 were reported by Wilson & Olsen (11); Vessels 56 to 65 were 

reported by Krupka (8,9); Vessels 66 to 70 were reported by White (12) 



 

 

Table 3. Collapse loads for vessels with welded saddles 

 
 

Limit Loads (kN) 
 

F.E. Limit Loads (kN) 
 

Vessel 

No. 

Collapse 

Load 

Pex (kN) 
 

Pmin 
 

Pinc 
 

Pkrup 
 

Plb 
 

Pub 
 

Pep 

 1  7.20  26.35  13.53  4.58  13.05  24.94  10.80 

 2  8.45  17.26  8.90  3.40  8.59  16.27  8.32 

 3  13.79  24.03  12.38  5.45  12.58  24.72  12.37 

 4  16.61  31.12  16.02  7.32  14.95  27.19  16.20 

 5  29.85  46.53  29.25  14.30  26.74  56.22  28.12 

 6  44.50  82.91  38.00  20.87  34.68  87.97  38.70 

 7  64.52  105.68  51.73  30.66  44.44  115.10  53.43 

 8  10.35  36.16  18.51  5.71  21.31  48.70  17.00 

 9  18.00  42.86  21.95  7.77  24.32  56.19  21.50 

 10  22.95  38.92  19.94  7.87  20.00  49.79  21.25 

 11  24.00  41.75  21.39  9.14  21.14  52.30  23.50 

 12  35.00  60.02  30.77  14.49  29.60  67.60  35.00 

 13  55.80  103.89  53.28  26.70  49.81  124.70  59.50 

 14  69.81  100.27  51.73  38.32  55.70  106.20  75.00 

 15  5.85  37.62  19.22  5.67  20.64  41.18  15.05 

 16  12.15  44.71  22.71  7.71  23.80  59.40  18.55 

 17  16.52  40.70  20.81  7.81  21.22  53.00  18.90 

 18  18.22  43.74  22.38  9.07  22.50  56.07  20.39 

 19  28.89  63.06  32.27  14.37  31.99  79.23  31.50 

 20  48.50  109.39  56.00  26.49  53.40  135.60  53.90 

 21  206.30  384.40  198.30  98.59  172.70  295.90  197.70 

 22  219.20  392.60  203.80  101.20  112.60  298.40  201.73 

 23  190.30  376.40  194.30  95.90  96.20  255.50  183.40 

 24  866.90  2042.80  1163.80  363.50  280.40  445.60  381.00 

 25  2.49  8.37  4.31  1.66  2.44  4.18  3.60 

 26  3.73  10.89  5.86  1.66  2.34  5.94  4.10 

 27  0.68  2.13  1.64  0.83  1.32  4.06  0.90 

 28  0.74  4.69  2.61  0.83  2.54  5.15  1.00 

 29  300.0  903.67  479.60  213.37  279.30  647.50  320.00 

 30  310.0  903.67  479.60  213.37  279.30  647.50  320.00 

 

Vessels 1 to 20 were tested by the authors; Vessels 21 to 24 were reported by Tooth & Jones 

(6); Vessels 25 to 30 were tested by Krupka (7,8) 

 



 

Table 4. Collapse loads for vessels with loose saddles 

 
 

Limit Loads (kN) 
 

F.E. Limit Loads (kN) 
 

Vessel 

No. 

Collapse 

Load 

Pex (kN) 
 

Pmin 
 

Pinc 
 

Pkrup 
 

Plb 
 

Pub 
 

Pep 

 31  4.05  6.36  3.59  4.58  3.32  4.81  4.50 

 32  6.45  8.43  4.45  6.10  4.24  6.12  5.81 

 33  10.23  13.41  7.16  10.29  6.79  10.08  9.55 

 34  7.55  9.28  5.07  7.32  4.82  7.18  7.28 

 35  17.00  19.80  10.70  15.77  10.20  10.70  15.77 

 36  24.47  30.85  16.58  25.34  16.27  25.25  22.48 

 37  32.73  36.36  19.57  30.67  19.85  30.97  28.55 

 38  4.68  7.20  3.97  5.71  3.57  5.30  5.79 

 39  7.43  9.24  5.06  7.77  4.58  6.93  7.75 

 40  9.00  8.98  4.89  7.89  4.52  6.64  8.25 

 41  11.00  10.15  5.49  9.14  5.19  7.54  9.25 

 42  13.00  15.44  8.39  14.49  7.95  11.68  13.50 

 43  25.38  28.16  15.14  26.70  14.56  21.29  25.00 

 44  37.50  36.50  19.45  28.32  20.51  30.17  35.03 

 45  3.69  7.47  4.08  5.67  3.65  5.65  4.90 

 46  6.41  9.69  5.25  7.71  4.78  7.29  6.89 

 47  7.85  9.49  5.12  7.81  4.69  7.15  7.27 

 48  8.23  10.78  5.79  9.07  5.52  8.13  8.23 

 49  14.62  16.68  8.91  14.37  8.71  12.73  13.23 

 50  22.46  30.32  16.15  26.4  15.39  23.81  23.62 

 51  107.60  129.80  70.70  112.70  66.05  104.45  102.30 

 52  89.70  112.60  60.80  95.70  66.05  104.45  78.20 

 53  587.90  589.90  324.80  541.60  318.50  602.12  649.50 

 54  400.00  542.00  298.90  361.10  201.10  427.20  355.60 

 55  304.90  467.30  257.10  270.80  133.14  312.50  303.03 

 56  1.50  2.18  1.20  1.66  1.11  1.80  1.74 

 57  3.18  4.69  2.75  1.66  2.50  3.92  4.00 

 58  0.63  1.36  0.73  0.83  0.80  1.60  1.14 

 59  0.80  2.93  1.69  0.83  1.42  3.40  1.80 

 60  234.00  466.91  258.63  239.50  114.10  289.70  220.00 

 61  268.00  466.91  258.63  239.50  114.10  289.70  220.00 

 62  248.00  1898.70  1142.60  239.50  323.20  755.70  654.00 

 63  268.00  466.91  258.63  239.50  213.66  435.10  210.00 

 64  265.00  466.91  258.63  239.50  213.66  502.00  234.00 

 65  257.00  466.91  258.63  239.50  213.00  612.60  257.50 

 66  192.00  466.91  258.63  239.50  141.77  348.30  210.00 

 67  13.90  30.90  16.90  10.00  11.23  21.66  15.00 

 68  19.90  38.90  20.90  15.20  12.27  23.67  22.69 

 69  27.90  45.80  24.90  20.70  14.60  28.28  29.97 

 70  11.00  22.90  13.00  5.00  9.15  17.65  13.25 

Vessels 31 to 50 were tested by the authors; Vessels 51 to 55 were reported by Tooth & 

Jones (6); Vessels 56 to 65 were reported by Krupka (7,8); Vessels 66-70 were reported by 

White (12) 
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Figure 1  Geometric details of vessel and simple test arrangement 

Figure 2  Geometric representation of plastic collapse regions 
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Figure 3. Collapse Loads for Vessels 1-7: Welded Saddles 
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Figure 4. Collapse Loads for Vessels 8 - 14: Welded Saddles 
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Figure 5. Collapse Loads for Vessels 16 - 20: Welded Saddles 
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Figure 6. Collapse Loads for Vessels 31 – 37 : Loose Saddles 
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Figure 7. Collapse Loads for Vessels 38 – 44 : Loose Saddles 
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Figure 8. Collapse Loads for Vessels 46 – 50: Loose Saddles 
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Figure 9. Collapse Load Ratios : Welded Saddles 
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Figure 10. Collapse Load Ratios : Loose Saddles 




