Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Interacting Frobenius Algebras are Hopf

Duncan, Ross (2015) Interacting Frobenius Algebras are Hopf. In: Higher TQFT and categorical quantum mechanics, 2015-10-19 - 2015-10-23, Erwin Schrödinger Institute.

Full text not available in this repository. Request a copy from the Strathclyde author


Commutative Frobenius algebras play an important role in both TQFT and CQM; in the first case they correspond to 2d TQFTs, while in the second they are non-degenerate observables. I will consider the case of “special” Frobenius algebras, and their associated group of phases. This gives rise to a free construction from the category of abelian groups to the PROP generated by this Frobenius algebra. Of course a theory with only one observable is not very interesting. I will consider how two such PROPs should be combined, and show that if the two algebras (i) jointly form a bialgebra and (ii) their units are “mutually real”; then they jointly form a Hopf algebra. This gives a free model of a pair of strongly complementary observables. I will also consider which unitary maps must exist in such models.