Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Comparative analysis of different wave turbine designs based on conditions relevant to northern coast of Egypt

Shehata, Ahmed and Xiao, Qing and El-Shaib, Mohamed and Sharara, Ashraf and Day, Alexander (2017) Comparative analysis of different wave turbine designs based on conditions relevant to northern coast of Egypt. Energy, 120. pp. 450-467. ISSN 1873-6785

[img]
Preview
Text (Shehata-etal-Energy-2016-Comparative-analysis-of-different-wave-turbine-designs)
Shehata_etal_Energy_2016_Comparative_analysis_of_different_wave_turbine_designs.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (4MB) | Preview

Abstract

Wave energy has a great potential to solve the unrelenting energy deficiency in Egypt. The present work recommends Wells turbine as a suitable choice for the Egyptian coasts due to its simple and efficient operation under low input air flow. In addition, the possibility of extracting the wave energy from the Egyptian coasts was investigated using the oscillating water system based on real data from the site. To achieve this purpose, two-dimensional numerical models for Wells turbine airfoils, functioning under sinusoidal wave flow conditions, were built. Moreover, the running and starting characteristics under sinusoidal-flow conditions were investigated using a mathematical code. The results were discussed using the first law analysis, in addition to the second law analysis by using the entropy generation minimization method. It was found that the NACA0015 airfoil always gives a global entropy generation rate that is less than other airfoils by approximately -14%, -10.3% and -14.7% for the sinusoidal wave with time periods equal to 4, 6 and 8 seconds respectively. Moreover, the effects of blade profile, time period and solidity on the output power (kW) value were discussed.