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Diagnosis of Series DC Arc Faults—A Machine
Learning Approach
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Abstract—Increasing prevalence of dc sources and loads
has resulted in dc distribution being reconsidered at a mi-
crogrid level. However, in comparison to ac systems, the
lack of a natural zero crossing has traditionally meant that
protecting dc systems is inherently more difficult—this pro-
tection issue is compounded when attempting to diagnose
and isolate fault conditions. One such condition is the se-
ries arc fault, which poses significant protection issues as
their presence negates the logic of overcurrent protection
philosophies. This paper proposes the IntelArc system to
accurately diagnose series arc faults in dc systems. Inte-
lArc combines time–frequency and time-domain extracted
features with hidden Markov models (HMMs) to discriminate
between nominal transient behavior and arc fault behavior
across a variety of operating conditions. Preliminary testing
of the system is outlined with results showing that the sys-
tem has the potential for accurate, generalized diagnosis of
series arc faults in dc systems.

Index Terms—Arc discharges, dc power systems, fault
diagnosis, hidden Markov models (HMMs), wavelet trans-
forms (WTs).

I. INTRODUCTION

THE prevalence of dc distribution is a consequence of an in-
creasing reliance on distributed renewable energy sources,

higher penetrations of electric vehicles and storage systems, and
an overall rise in dc loads such as computers, solid-state lighting,
and building networks [1]. This prevailing trend is not limited
to land-based systems, as attempts to further optimize aircraft
[2] and shipboard systems [3] using the more-electric and all-
electric concepts has also given rise to an increased dependence
on dc distribution within such ad hoc configurations. In general,
employing dc distribution over ac has the potential to reduce
losses in feeders, provide improved power quality, enhance re-
liability, and reduce the number of power conversion stages
[4]. However, ensuring that the distribution network is properly
protected throughout fault conditions is a principal challenge,
which must be addressed before these perceived benefits are
fully realized. It is well established that the lack of a natural
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zero crossing means that the protection of dc systems is inher-
ently more difficult to achieve in comparison to ac systems [5];
furthermore, protecting dc systems from fault conditions that
have traditionally been difficult to detect exacerbates this pro-
tection challenge. The series arc fault is one such fault condition
that poses significant protection issues [6].

Series arc faults occur in series with loads at unintended
points of discontinuity within an electrical circuit [7]. These cir-
cuit imperfections often emerge as a contact separation or loose
connection–in harsh operating environments vibration often
results in series arcing exhibiting intermittent behavior.

These faults introduce additional impedance between source
and load, and the resultant decrease in network current means
they are particularly difficult to detect using conventional over-
current protection practices. At dc levels, the increased proba-
bility of a sustained arcing event means they present a significant
fire hazard. Their presence has been known to affect the secure
and reliable distribution of power in photovoltaic [8], aircraft
[9], and shipboard [10] systems.

Previous systems have been developed that aim to detect the
onset of series arc fault conditions, however, major challenges
still exist with regards to increasing overall accuracy of detection
and establishing generalized systems that can accurately diag-
nose faults across a variety of operating conditions. This paper
proposes IntelArc, an intelligent diagnostic system that aims
to address these challenges. IntelArc is based on the hidden
Markov model (HMM) [11] and uses features extracted from
network data in both the time and time–frequency domains.

The next section of the paper describes arc faults, includ-
ing difficulties in detecting series conditions and previously
proposed diagnostic systems. Section III discusses the suitabil-
ity and benefits of using HMM for arc fault diagnosis (AFD).
Section IV describes the method of the IntelArc system and
elaborates on an arc fault model used for generation of synthetic
training data; extraction and selection of fault features from the
training data; and HMM training. Section V uses two case stud-
ies to test and validate the IntelArc method and conclusions are
provided in Section VI.

II. SERIES ARC FAULTS AND EXISTING

DIAGNOSTIC SYSTEMS

Normal arcing events occur during mechanical switching op-
eration of circuit breakers and contactors [12]—these devices
are designed to withstand arc formation and normal arcing is typ-
ically highly transient and unsustainable. Conversely, arc current
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Fig. 1. Example of a sustained series arc current waveform.

through ionized gas during fault events may be fully sustained;
the high heat generated can lead to partial volatilization of the
conductors and increases the risk of fire to surrounding insula-
tion [13]. There are many conditions that may cause an arc fault,
including [7] the following:

1) Chemical, electrical, and mechanical deterioration of
wiring and interconnections.

2) Presence of moisture or fluids on the insulation enabling
leakage currents to create small electrical discharges
across voids to other conductors: this condition is termed
wet arc tracking.

3) Loose terminal connections.
Arc faults are categorized as either parallel or series—this

paper focuses solely on the detection and diagnosis of series arc
fault conditions. Series arcing usually begins with either chemi-
cal corrosion of pin-socket connections or loose connections in
series with loads. A significant detection issue with the series
arc fault is the fact that, as the ionized gap is in series with the
load, fault current actually decreases below load rated current
and well below relay trip curves.

In dc-supplied systems there is no natural current zero. As a
result, arcing conditions are more sustainable and, potentially,
more dangerous—a typical series arc current waveform in a dc
system is illustrated in Fig. 1, where arcing over a sustained
period is evident. This waveform was captured using a network
model of a 270 Vdc rectifier interfaced system supplying a
purely resistive load–the fault model described in Section IV-A
was implemented in this network model to characterize the arc
fault conditions. The hazards that series dc arc fault events pose
to safety and reliability of supply, combined with the associated
detection difficulties, have resulted in significant scope for the
development of accurate diagnostic systems to mitigate their
impact.

Systems for diagnosing arc faults are classified as either me-
chanical or electrical [14]. Electrical-based systems extract arc
features in the time [15], frequency [16], or time–frequency
[17] domains, and algorithms analyze these extracted features
to determine the presence of arcing events. The transient, nonsta-
tionary characteristics of arcing conditions means that systems
that rely on time–frequency domain extractions hold the most
promise for accurate diagnosis of arc fault conditions.

Series dc AFD systems based on all three feature extraction
methods have been proposed in the literature. Guo et al. [18] de-
fined a system that identifies a period of time between a sudden

drop in load current and arc ignition as an arc precursor time.
Kilroy et al. [19] developed a system based on averaging load
current signals over time periods. Momoh and Button [20] pro-
posed a system that used spectral energy from nominal and fault
events to train separate artificial neural networks (ANNs). Other
time-domain and frequency-domain series dc AFD methods are
outlined in [21]–[23]. Yunmei et al. [24] described a system
based on time–frequency domain features that utilized the en-
ergy of extracted wavelet transform (WT) [25] coefficients for
fault diagnosis. Yao et al. [26] developed a system based on time
and time–frequency features for application to representative dc
microgrid networks. The system used statistics calculated from
current data, and coefficients extracted using the WT, for fault
diagnosis.

Despite the development of multiple AFD systems, major
challenges still exist concerning maintaining high diagnostic
accuracy across a range of operating conditions. Accurately
diagnosing faults that are often highly intermittent and cause re-
ductions in system current is already a difficult task—attempting
to develop an accurate and generalized diagnostic system is a
significant challenge. Reliance on algorithms that compare ex-
tracted features with basic thresholds, as the majority of these
systems do, will not suffice in meeting this challenge based on
robustness to noise alone. Consequently, this paper proposes
IntelArc, a machine learning (ML) based system that uses ex-
tracted features to train HMM and increases the potential for an
accurate and generalized diagnostic performance.

III. HMM-BASED ARC FAULT DIAGNOSIS

A range of ML techniques have the potential to diagnose se-
ries dc arc faults, including ANN [20], support vector machines
(SVM) [27], and Bayesian networks [28]. HMMs [11] can be
used in classification problems associated with noisy time-series
data even though they do not have exact domain knowledge
of the problem [29]. Traditional applications of HMM are in
speech, handwriting, and gesture recognition [30]. More re-
cently, they have been applied in classifying patterns in process
trend analysis [31], machine condition monitoring [29], and
ac transmission/distribution networks [32], [33]—they have not
previously been applied for diagnosis of series dc arc faults.
HMMs assume that the system modeled is a Markov process
with unobserved (hidden) states and that system data is a noisy
observation of this process.

The main benefit of applying HMMs in this application area
is their suitability for detection of nonstationary signals—this
feature makes them ideal for diagnosis of faults that exhibit
highly transient characteristics. The flexible choice of obser-
vation model, a Gaussian mixture distribution, for example,
makes them robust to noise and removes the need for normaliza-
tion constants, which could otherwise result in different scaling
factors between training and test data sets, hampering gener-
alization capability. As probabilistic models, HMMs also pro-
vide a log-likelihood (LL) metric that quantifies the probability
of various fault hypotheses—this form of diagnostic explana-
tion is not provided by ANNs, for example, which would only
provide a binary classification or regression with no accompa-
nying confidence metric. The probabilistic formulation is also
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Fig. 2. Outline of IntelArc method—only three trained HMM are illustrated for brevity: these relate to models of nominal steady-state, nominal
transient, and series arc fault conditions, respectively. In practice, further HMM relating to different conditions could be trained and implemented
within the framework.

attractive from the perspective of combining models, which can
be performed through well-understood axioms of probabilistic
inference. An HMM-based system is also highly scalable and
can be readily updated (i.e., without retraining multiple models)
to include models of emergent system conditions. Through for-
mal model selection procedures, over-fitting of HMMs can be
avoided — although choice of the most likely model could be
undertaken by optimizing LL, using Bayesian information crite-
rion (BIC) [30] instead ensures the fit is not overly representative
of the training examples by penalizing model complexity.

IV. INTELARC—METHOD OVERVIEW

Fig. 2 outlines the method of the proposed IntelArc system.
The system utilizes a framework of trained HMM relating to
different network conditions. Features are extracted from win-
dows of network current data and applied to each trained HMM
within the framework for inference of series arc faults. Current
can be sampled at various locations throughout the network and
each load current window covers 50 ms of system operation.
Each HMM outputs an LL measure, which quantifies the sim-
ilarity of online data with the trained parameters of the HMM.
An algorithm analyses the LL output of each HMM every 50 ms,
and the system outputs an alarm if there is sufficient evidence to
suggest the presence of arc fault conditions—50 ms was deemed
a sufficient length of time to safely diagnose and isolate arcing
conditions and also decrease the probability of false detections.
The process is repeated as new windows of current data become
available.

A. Generation of Arc Fault Data

A software model was used for generation of arc fault data.
The model was proposed by Uriarte et al.—a complete descrip-
tion of the model is provided in [34]. The model was designed
to represent arcing conditions between electrodes that separate
at a constant speed and eventually dwell at a fixed distance.
Arc voltage, current, and resistance outputs were compared to
similar dc arc models within literature [35] to assess similarity
and, thus, ensure that it is accurately representative of series dc
arc conditions.

Fig. 3. Comparison of model outputs with Paukert’s formulas.

The model is a hyperbolic approximation of dynamic arc
voltage and current that assumes arc impedance is predom-
inantly resistive. Nonintermittent fluctuations in voltage and
current are used to represent unsuccessful quenching attempts.
Arc voltage gradient of the model, i.e., how voltage varies with
arc gap, was compared with previously defined values by both
Browne (12 V/cm) [36] and Strom (13.4 V/cm) [35].

Average gradient of the model was �10 V/cm. Despite ex-
hibiting slightly lower values, there is agreement with Browne
and Strom’s models, particularly for smaller electrode gaps. V−I
characteristics of fixed length arcs are generally considered to
be inverse and nonlinear below a current transition level. For arc
currents above this level (which is defined to be in the region
of 10–13 A for small electrode gaps [37]), voltage increases
only minimally with current. Evaluation of V–I model behavior
showed minimal agreement with lower current characteristics,
although it did accurately characterize voltage for current ranges
above the transition level. In this sense, an associated caveat of
the model is that voltage output at arc currents below �10A are
less accurate.

Paukert [38] defined a formula that quantified arc impedance;
a comparison between model impedance and this formula for
various electrode gaps is provided in Fig. 3. The general non-
linear characteristic of arc impedance was captured within the
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Fig. 4. Frequency spectrums throughout different arc fault conditions.

model where resistance increases significantly at lower current
values and becomes almost constant at higher current. There
is also acceptable agreement with Stokes, albeit with arc resis-
tance slightly lower for corresponding current magnitudes—this
suggests that arc voltage magnitude is slightly lower than the
empirical formula proposed.

Arcing current frequency spectrums up to 200 kHz were ob-
served within data simulated in the basic system model de-
scribed in the following section using the fast Fourier transform
(FFT)—spectrums across different fault conditions are illus-
trated in Fig. 4. Analysis of the spectrums highlighted greater
energy content at higher harmonic levels under arcing condi-
tions in comparison to nominal background noise. Indeed, there
is roughly a 25 dB disparity at a frequency as low as 10 kHz.
FFT results were comparable to those presented in [39].

Overall, these comparisons validate accuracy of the fault
model with a sole inconsistency concerning V–I character-
istics at low current levels. However, voltage gradients, arc
impedance, and frequency characteristics showed relative agree-
ment. Generation of intermittent series fault data was required to
test IntelArc’s ability to accurately diagnose intermittent events.
Hence, the sustained fault model proposed in [34] was extended
to include fault intermittency. This extension includes func-
tionality that randomly switches the voltage developed across
a sustained arc fault from arc voltage to zero to represent in-
termittent separation of contactors—the process of initiating a
sustained fault and then switching voltage across the fault to
zero at a random time after fault onset can be reproduced multi-
ple times throughout one simulation run of the model to create
intermittent conditions.

B. Arc Fault Feature Extraction and Selection

In ML-based diagnostic systems, features extracted from
data should be optimally discriminative between the different
conditions/behaviors under consideration [40]. Extracting
features in the time–frequency domain highlights the frequency
components that are present at particular points of time in a
signal—the transient characteristics of arc faults means that,

Fig. 5. Examples of dc current and associated DWT extractions for
(a) nominal conditions and (b) arc fault conditions.

theoretically, there should be relatively significant differences
between the time–frequency extracted features of nominal and
fault conditions. The discrete WT (DWT) extracts different
bands of frequencies from a signal through successive filtering
and down-sampling. Different bands of high frequencies are
output as detail coefficient levels, whereas bands of low frequen-
cies are output as approximate coefficient levels [41]. Analyzing
how the detail and approximate coefficient levels vary through-
out different system conditions was the main goal of feature
selection. For further information on DWT theory, refer to [41].

Training data were simulated using a basic system model
comprising a six-pulse passive diode rectifier feeding an either
purely resistive or reactive load. AC input to the rectifier was
230 Vac, with frequency varying between 50 and 400 Hz
throughout different simulation runs, to provide 270 Vdc to the
load. Fault conditions were initiated on the load feeder using
randomized instances of the intermittent arc model described
and validated in the previous section: speed of electrode separa-
tion was randomized between 5 and 25 mm/s, and the distance
at which the electrodes dwell was randomized between 1 and
15 mm. System current is sampled at 20 kHz and has 5 kHz
noise—the noise model is Gaussian distributed with 0 mean
and 0.001 variance that is sampled every 20 ms throughout each
simulation to model sensor noise. Five kilohertz was chosen as
this lies in the middle of the observed 0–10 kHz bandwidth of a
20 kHz sampled signal. The following sections describe feature
extraction and selection from the simulated training data.

1) Time–Frequency Domain Extraction—Approximate
Coefficients: Fig. 5(a) illustrates a training data example (left)
of a 50 ms window of normalized system current through-
out nominal conditions with the associated level 1, 3 and
5 extracted DWT approximate coefficients (right). Transient
features are ideally extracted using a DWT mother wavelet
[46] that possesses sharp characteristics, and consequently, the
db2 mother wavelet was selected. Coefficients were extracted
from the current data using MATLABs wavelet toolbox [44].
DC ripple, as a result of an upstream rectifier, is evident in
the sampled current. The approximate coefficients extract the
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Fig. 6. Model of the DWT approximate extractions using a GMM for
(a) nominal conditions and (b) arc fault conditions.

time–frequency response across the lower frequency subbands,
and high-frequency noise is filtered out as the levels increase
and subbands get both lower and narrower. In contrast, Fig. 5(b)
shows an example of normalized current data during arc fault
conditions with associated extracted approximate coefficients.
The sudden decrease in load current is a result of an unsuccess-
ful quenching attempt that, in comparison to Fig. 5(a), signif-
icantly changes the magnitude and shape of the approximate
coefficients during fault conditions.

Diagnostic systems based on HMM rely on features that cap-
ture temporal dynamics—modeling the distribution of the ap-
proximate coefficients using a Gaussian mixture model (GMM)
[30] enables the dynamics of each coefficient to be assessed
through designation of each data sample to a particular mixture.
As an example, GMMs of approximate level 1 coefficients were
developed using the nominal and series arc fault training data
to analyze the dynamics across each condition and determine
features that increase discrimination capabilities, as illustrated
in Fig. 6(a) and (b), respectively. The following steps were un-
dertaken throughout GMM development:

1) Analysis of the distribution of DWT coefficients for each
condition—a nonparametric Kernel density estimation
was used to determine general shape of the distribution.

2) Use of Gaussian distributions to analyze the probability of
coefficients falling between specified ranges in the data—
the example in Fig. 6 shows four different Gaussians that
model the distribution of four different ranges in the data,
although this number may vary depending on desired
resolution.

Within the fault condition GMM there is significant disparity
between the areas of each Gaussian mixture with an increased
probability of coefficients exhibiting magnitudes close to 1. In
comparison to nominal conditions, the number of transitions
between mixtures across a sequence of data samples is likely

Fig. 7. Model of the DWT detail extractions using a GMM for (a) nominal
conditions and (b) arc fault conditions.

to be significantly less. These differing characteristics high-
lighted that approximate coefficients are a useful feature for
discriminating between nominal and series arc fault conditions.
Selecting the levels of coefficients was necessary to optimize
detection accuracy and limit feature redundancy. It was evident
from analysis of the extracted DWT approximations that coeffi-
cients begin to level out as the levels increase and the frequency
subbands get closer to zero—the examples in Fig. 5 emphasize
the flatness of level 5 coefficients in comparison to levels 1 and
3. This is not ideal as the distributions begin to cluster within cer-
tain regions, and this reduces the number of transitions during
nominal conditions. Consequently, DWT approximate coeffi-
cient levels 1, 2, and 3 were selected as suitable features for
AFD to minimize the effect of extremely low-frequency bands
on detection accuracy.

2) Time–Frequency Domain Extraction—Detail Coeffi-
cients: Transient arc fault signals contain high-frequency com-
ponents that are also potentially useful for detection. The DWT
detail coefficients, which extract high-frequency components,
are therefore an important feature to consider. Similar to the
case of approximate coefficients, it is necessary to select detail
coefficients that optimally discriminate between various condi-
tions.

Fig. 7 illustrates GMMs of detail level 1 coefficients for both
nominal and fault conditions extracted from 50 ms windows
of normalized current data during each condition. Current dur-
ing nominal conditions contains both dc ripple and measurement
noise; dc ripple results in levels 1 and 3 coefficients increase ev-
ery 12.5 ms (or 200 samples for a 20 kHz sampled signal).
Measurement noise also increases the magnitude of detail coef-
ficients; however, as noise is random, the coefficient increases
are less predictable. Five kilohertz noise has a notable effect on
level 3, whereas there is less effect on level 1.

During fault conditions, the detail coefficients are mainly af-
fected by the arc fault transients and coefficient increases are
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particularly evident at the lower levels—relative to nominal sys-
tem conditions, coefficient magnitude increases at lower levels
are significantly more prominent under fault conditions. The
increased probability of higher coefficient magnitudes results in
a greater number of transitions between mixture components in
a GMM of fault conditions—in comparison, the GMM of nom-
inal condition data has significantly less transitions between
mixtures. The differences in detail coefficients between condi-
tions confirm that they are an excellent feature for use in the
HMM-based IntelArc. Analysis of each detail level showed that
levels 3–5 did not optimize discrimination between each con-
dition as they do not capture the higher frequency transients
present throughout the arc fault events.

In practice, noise from power electronic converters will not
be limited to 5 kHz and may be present across the entire
0−10 kHz observable bandwidth. Noise between 5 and 10 kHz
will have an effect on lower level detail extractions; however,
the salient higher frequency signatures of arcing will still be
present within these features, and they will remain useful for
diagnosis. This is not the case at increased detail levels as the
higher frequency components are filtered out–their inclusion in
IntelArc will likely impair detection. Consequently, the number
of DWT detail extractions is limited to lower levels, with only
levels 1 and 2 being selected as suitable features.

3) Summary of Arc Fault Feature Extraction and Se-
lection: The process of modeling the probability distributions
of extracted coefficients under different network conditions is
critical for using HMM for AFD as it enables appreciation of
the coefficient dynamics under each network condition and sim-
plifies the HMM training stage. While previously proposed sys-
tems [26] have used WT extracted features for AFD, the studies
outlined here, to the best of knowledge, are not available in
literature.

The author’s studies determined that the three approximate
and two detail DWT coefficients extracted from system current
with a 20-kHz sampling frequency would be utilized for series
dc arc fault detection within the IntelArc system.

Time-domain features were also extracted using statisti-
cal analysis of the windows of system current data. Specifi-
cally, a time-domain feature based on a moving average across
50-ms windows was extracted. Calculation of the moving av-
erage limits dc ripple and separates the normalized data into
distinct regions for each condition. Signals are also generally
smoother, with the majority of high-frequency noise removed.
The feature is complementary to the WT coefficients as the
general distinctions between nominal and fault conditions are
highlighted.

C. HMM Training

Feature selection determined that in total six feature vectors
were used to train each HMM. These features included:

1) DWT approximation coefficient levels 1, 2, and 3;
2) DWT detail coefficient levels 1 and 2;
3) moving average of system current.

The number of hidden states and mixture components for
each HMM within the system are summarized in Table I. The

TABLE I
NUMBER OF HIDDEN STATES AND MIXTURES WITHIN EACH HMM

HMM Model No. of Hidden States No. of Mixtures

Nominal steady state 10 10
Nominal transient 4 4
Series dc arc fault 6 6

increased number of hidden states in the nominal steady-state
model is a consequence of the WT approximation features as a
greater number of states emphasize higher transition rates. Lim-
iting the number of hidden states and mixture components of
the fault and nominal transient models reduces the risk of over-
fitting the models to training examples; overfitting the nominal
steady-state model is less of an issue as data under this condition
is likely to be more consistent across a range of network sce-
narios. The expectation–maximization algorithm [30] was used
for model training.

D. AFD Algorithm

Accurate AFD within IntelArc is dependent on correct inter-
pretation of the LL outputs of each trained HMM—this section
provides examples of these outputs throughout various network
conditions and describes the algorithm for analyzing them to in-
fer network condition. Online application of IntelArc involves
the use of features extracted from 50 ms windows of current data
being recursively applied to each trained HMM. Sliding win-
dows with an interval of 10 ms and overlap of 40 ms are applied
to the fault and nominal HMM, while 50 ms consecutive win-
dows are applied to the nominal transient HMM. The algorithm
analyses the LL outputs of each HMM at 50 ms intervals—
hence, five LL outputs from the nominal and fault models and
one LL output from the nominal transient HMM are analyzed at
each interval. The use of sliding windows is advantageous for
detection of intermittent arc events as there is increased poten-
tial for detection of changes in fault current across shorter time
frames.

Fig. 8(a) illustrates a typical example of dc network current
across steady-state, nominal transient and intermittent series
arc fault conditions: a simple load switch models a nominal
transient event and is evident at roughly 4 s while intermittent
arcing events develop at roughly 9 s and results in periods of a
decreased system current. Both the duration of each intermittent
fault event and the level of current reduction are variable, and the
aim of the system is to diagnose these highly variable events in
real-time. The corresponding LL outputs of each trained HMM
are illustrated in Fig. 8(b). The only points in time throughout
the 10-s period where the LL of the nominal model is not greater
than both the fault and transient model LLs are during the load
switching event and the intermittent arcing events.

During the load switching event, the LL of the nominal model
decreases, which could potentially indicate the presence of a
fault; however, the simultaneous LL increase of the nominal
transient model results in a fault not being diagnosed in this in-
stance. In comparison, throughout the intermittent arcing events,



1604 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

Fig. 8. (a) Example of network current throughout various conditions,
(b) corresponding LL outputs of trained HMM, and (c) LL ratio test.
Note the increase at 4 s caused by the nominal transient event—the
corresponding LL increase of the transient model beyond the nominal
and fault models at this point results in no fault being diagnosed.

the LL of the fault model increases beyond that of the nominal
and transient models, which is indicative that arc fault condi-
tions are present, and hence, diagnosis of a fault is prescribed
by the system.

Another useful measure used that indicates an increased prob-
ability of fault presence is an LL ratio test [30] between the
nominal and fault models—this ratio quantifies the difference
between the two hypotheses, and points in time where it is
greater than 1 may imply series arc fault conditions. An il-
lustration of the LL ratio test for this example is provided in
Fig. 8(c).

A summary of the complete IntelArc method, including appli-
cation of network data to each trained HMM and the algorithm
for interpretation of the model outputs, is illustrated in Fig. 9.
The algorithm compares the LL outputs to predetermined thresh-
olds to determine if there is a significant probability of series
arc fault presence during each 50 ms observational period. If all
of the specifications described in Fig. 9 are not met, nominal
operation is assumed.

Predetermined thresholds were set through analysis of HMM
LL outputs across different operational scenarios. Normaliza-
tion ensures IntelArc is generally neutral to different levels
of dc ripple and current magnitude. However, performance
may be affected by different forms of reactive loading. Dif-
ferences in inductive and capacitive loading may impact set-
ting of LL thresholds, and it is therefore imperative that di-

Fig. 9. Summary of the complete IntelArc method.

agnostic performance is assessed across different types of
load—the case studies in the following section investigates these
issues.

V. CASE STUDIES

The two case studies described in this section were used to
evaluate and validate diagnostic accuracy of IntelArc. The basis
of the first case study is the repeated injection of intermittent
series arc faults into a dc power network model for generation
of test data where the time of fault onset (s) is known; the test
data is input to the system for inference of network condition,
and its outputs are compared with known behavior to verify
accuracy and detection time. The second case study used fault
data generated using a representative dc testbed to test IntelArc
accuracy.

A. Case Study 1: DC Network Model and Testing
Methodology

The dc test network model on which arc faults were injected
is illustrated in Fig. 10. MATLAB Simulink/SimPower Sys-
tems [48] and associated block libraries were used to model
the network—the arc fault model, described in Section IV,
could be implemented at any desired location in the network
model using the drag and drop functionality of the software.
The fault model is capable of producing a wide range of condi-
tions and, as such, enables the generalization capabilities of the
method to be tested. Network topology includes a distribution
bus bar fed from a rectifier that, in turn, provides dc power to
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Fig. 10. Test dc network model architecture.

two load centers through separate feeders. This basic network
architecture may be representative of low-voltage dc microgrids
that are either interconnected with a main grid [1] or stand-
alone, e.g., within an aircraft or shipboard system [2], [43]. The
passive rectifier has either 230 Vac input to commutate to 270
Vdc or 115 Vac input to commutate to 28 Vdc—these are typical
distribution levels in aerospace applications. Lumped element
models consisting of resistors, inductors and capacitors were
used to model resistive and reactive loads. The two load centers
are directly interfaced to the system and do not include addi-
tional conversion stages. Series arc faults were modeled on the
load feeders and current through the feeder is sampled at either
the load centers or the bus bar. Practically, it would be more
suitable for current to be sampled at the main distribution bus
bar to relieve hardware issues—measurements would be com-
municated to a central data acquisition system for processing,
which, in turn, would communicate to protection devices in the
event of fault detection. As part of the case study, a total of
60 model simulations were run for generation of individual test
cases, where each simulation lasted 10 s. Each test case includes
periods of nominal steady-state behavior on both load feeders,
nominal transient events on both feeders, and series intermittent
arc fault behavior on one feeder. The current profile in Fig. 8(a)
is a typical example of simulated current on the faulted feeder
throughout one of the test cases. Nominal transient events are
modeled through basic switching of loads within the load cen-
ters. To fully test the generalization capabilities of IntelArc,
network parameters such as feeder lengths, fault location along
the feeder, onset and duration of each fault event, load types, and
voltage levels were varied throughout each simulation run, and
5 kHz Gaussian noise was added to the sampled current to model
sensor noise—a description of the network model parameters
is provided in Table II. Forty tests were conducted at 270 Vdc,
and 20 were conducted at 28 Vdc. This case study does not con-
sider switching noise from active power converters. Each 10-s
test case was divided accordingly into individual data windows

TABLE II
TEST DC NETWORK MODEL PARAMETERS

Network Model Parameter Value

AC line resistance Rac 0.641 Ω/km
DC line resistance Rdc 0.641 Ω/km
AC line inductance Lac 0.34 mH/km
DC line inductance Ldc 0.34 mH/km
DC line capacitance Cdc 0.1 µF/km
DC side filter capacitance CF 1mF
DC voltage level VDC 270 or 28 Vdc
Load resistance Ranged between 2 and 25 Ω
Load inductance Ranged between 1.25 and 7 mH
Load capacitance Ranged between 0.1 and 7 µF
DC feeder length Ranged between 45 and 90 m

and applied sequentially to the AFD system, as described in
Section IV-D.

1) Case Study 1: Results: Results of the 60 individual
test cases are summarized in Table III. In total, 59 out of
60 test cases were correctly diagnosed equating to overall accu-
racy of 98.3% and an average detection time from fault onset of
57.1 ms: the incorrectly diagnosed test case was the result of a
false positive (FP) during a nominal transient event under induc-
tive loading. 97.5% of 270 Vdc tests were accurately diagnosed
while 100% of the arcing events at 28 Vdc were accurately iden-
tified. This basic case study has highlighted various attributes
of the proposed system, including the following:

1) detection of variable duration intermittent arcing events;
2) detection of arcing events with variable decreases in load

current magnitude;
3) detection across a range of load currents;
4) accurate detection of all intermittent fault events;
5) some instances of nominal system transients result in

false detection;
6) acceptable detection time.

Original testing highlighted a higher rate of FPs as a result of
nominal transients. This was attributed to the LL of the nominal
steady-state model significantly decreasing at the transient event
(as expected) before increasing to a value more associated with
fault conditions immediately after the switching event, which
results in the system incorrectly diagnosing the presence of an
arc fault. To alleviate this problem, it was determined that diag-
nosis of a fault event cannot be made for 100 ms after a transient
event has been diagnosed. Trade-offs do exist between false de-
tection, nondetection, and detection time. LL thresholds may be
tuned to improve issues surrounding the rate of FPs although
this may lead to nondetection of some intermittent events (there
was no occurrence of false negatives in the test cases) as well
as an increased detection time. Future work will continue to
optimize thresholds to improve accuracy and refine reliability
of the method to move towards commercial application.

IntelArc operated effectively under different types of reactive
loading although further testing should be undertaken with ca-
pacitive loading to fully assess the impact it may have on system
performance. It is generally assumed [44] that detection within
highly capacitive networks is more challenging as the resistance
to changes in load voltage impacts the arcing noise signatures.



1606 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 13, NO. 4, AUGUST 2017

TABLE III
SUMMARY OF CASE STUDY 1 RESULTS

Load Type Load Voltage No. of No. of Correct Diagnosis Summary of Incorrect Average Detection Average Duration of
Load Type Interface Level (Vdc) Tests Diagnoses Accuracy (%) Diagnoses Time (ms) of Arcing Event (ms)

Inductive Rectifier 270 30 29 96.67 1 × FP 56.9 97
28 10 10 100 - 55.5 89

Capacitive Rectifier 270 10 10 100 - 62.4 104.4
28 10 10 100 - 53.7 101.2

Total 60 59 98.3 - 57.1 97.905

Fig. 11. One-line diagram of dc testbed setup.

Fig. 12. (a) Depiction of various components within the experimental
dc testbed configuration and (b) series arc fault throwing unit.

A similar line of discussion extends to the type of load interface
whereby the internal control of power electronic converters can
also alter fault current dynamics [44].

B. Case Study 2

The IntelArc method has also been tested using data gener-
ated within a dc network testbed, which has means of inducing
series arc faults. These initial experimental studies have tested
the methods ability to accurately diagnose faults in the pres-
ence of converter and measurement noise. A one-line diagram

of the testbed is illustrated in Fig. 11 and photographs depicting
various system elements are provided in Fig. 12. The setup con-
sists of a four-quad active rectifier providing dc power to a main
bus bar through two solid-state power controllers (SSPCs). Two
separate loads, a directly interfaced resistive load bank, and two
parallel motors interfaced using a buck–boost dc/dc converter
are connected to the main bus bar. Two current measurements
are taken at each respective feeder, and a voltage measurement
is taken at the main bus bar. This equipment and configuration is
limited to a maximum of 40 V, 320 W, which allows representa-
tion of low-voltage dc networks. As part of the case study, series
arc faults were induced between the source and the bus bar with
use of a fault throwing unit that consists of a stepper motor in-
termittently separating two contacts [34] [see Fig. 12(b)]. Also,
switching within the variable load bank was used to capture
nominal transient behavior. Electrical current data sampled at
20 kHz was captured at the source feeder using an oscilloscope
during steady state, series arc fault and nominal load switching
behaviors. This data were used to test the accuracy of the In-
telArc method that was trained using data generated from the
software model described in Section IV.

Current data captured at the source feeder and the cor-
responding diagnostic outputs of IntelArc are illustrated in
Fig. 13. Within this test example, the nominal load switch did
not result in false diagnosis, while the intermittent fault condi-
tions were accurately diagnosed. Five tests have been conducted
with the onset of arcing occurring at two different power levels
outlined in Table IV—IntelArc accurately identified the onset
of fault conditions in each test case and load switching behavior
did not result in FPs.

The next significant step would be implementing IntelArc
onto the microcontroller. Testbed data would be collected, pro-
cessed and analyzed using the integrated microcontroller to al-
low diagnosis of series arc faults in real time. In the event of fault
detection, control signals would be communicated to SSPCs
to isolate the fault and thus test time between fault onset and
isolation.

C. Comparison of IntelArc With Existing AFD Methods

The hybrid DWT and time-domain detection method pro-
posed in [26] was shown to be accurate at low current and
low voltages. However, accuracy at 240 and 300 Vdc with 25
A system current was only 40% and 60%, respectively, and
only sustained, not intermittent, faults are considered. Also,
testing under reactive loading was not undertaken. Case Study 1
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Fig. 13. (a) Experimental data captured using the dc testbed. Within
this test case, a nominal load switch occurred at 0.4 s and the onset of
intermittent series arcing occurred at 2.4 s. (b) Corresponding diagnostic
outputs of the IntelArc. IntelArc is not affected by the nominal load switch
and accurately detects arcing at the appropriate time.

TABLE IV
SUMMARY OF CASE STUDY 2 RESULTS

Voltage Level (V) Current Level (A) No. of Tests IntelArc Accuracy (%)

33 5.5 3 100
28 8 2 100

highlighted the ability of IntelArc to detect accurately across
270 and 28 Vdc levels and different forms of reactive loading.
The detection time is in the order of 100 ms—almost double
the average detection time of IntelArc. Test results of the ANN
method utilizing FFT features in [20] showed limited accuracy
in fault cases in comparison to IntelArc, as only 40% of 5 fault
scenarios were accurately diagnosed. Testing did not consider
nominal transient behavior. The main limitation of frequency
domain extractions of nonstationary transient arc fault signals
is there is no representation of how the frequency contributions
change throughout time.

The DWT analysis method in [24] claims high accuracy,
although generalization is not proven as test results are only
provided at 28 Vdc levels and values of load impedance are
unchanged throughout testing. The method relies on observa-
tion of a certain number of abnormal events over a 100 ms
period—thus, minimal detection time will be 100 ms.

A benefit of HMMs is the minimal computation effort re-
quired during calculation of LL statistics. IntelArc would be
computationally inexpensive as only the trained parameters, and
not associated training data, of each HMM are required for hard-
ware implementation. The basis of the algorithm itself are the
Viterbi algorithm [47] for calculating the LL of each HMM and
the DWT for feature extraction—the Viterbi algorithm has com-
putational complexity of O(N 2T ), where T is the number of
hidden states in each model, and the one-dimensional (1-D) db2

DWT has linear complexity O(N). The overall effect of com-
putational complexity on fault detection time is an avenue for
further investigation and will be assessed with further hardware
implementation.

Overall, the IntelArc method, that combines DWT feature
extractions with HMM, provides an excellent platform for ac-
curate, generalized and robust diagnosis of series dc arc faults.

VI. CONCLUSION

This paper has proposed IntelArc, a series AFD system for
application to dc networks, which is based on HMM and uti-
lizes time–frequency and time-domain features extracted from
network current data. The choice of advanced ML method was
motivated by the need to improve diagnostic accuracy and gen-
eralize across a range of network operating conditions. In par-
ticular, analysis of the temporal dynamics of DWT coefficients
and their use for implementation within the HMM-based sys-
tem determined the ranges of detail and approximate coefficients
that would optimize system performance. Two case studies val-
idated accuracy of the method. IntelArc can now be further
tested in the dc testbed with the benefit of using an accurate arc
fault software model. In this context, development would remain
software based with utilization of data from the validated arc
fault model to train the respective fault HMM; parameters and
algorithms would be integrated onto a microcontroller and the
methods ability to isolate faults would be tested in real-time. Ac-
celerating IntelArc through technology readiness levels (TRL)
will require further consideration of the effect that noise emis-
sions and interference from system devices have on detection
accuracy. Deployment within compact dc networks, with cur-
rent sensors located at the closest upstream bus bar, means that
transmitted fault signals and data should remain uncorrupted.
However, further consideration will also be given to this issue
at higher TRL.

The aspect of software development for hardware application
would be of significant importance and benefit; while the abil-
ity of ML approaches for various forms of fault diagnosis are
well documented [45], the main drawback of their approach is
a requirement for fault data, which is often unavailable. Access
to an accurate series arc fault model that enables instances of
fault data to be readily available, and from which a generalized,
accurate AFD system could be developed, is of significant ad-
vantage. The adoption of dc distribution is prevailing, and this
paper has shown the potential for IntelArc to improve reliability
and security of supply within such networks through diagnosis
and isolation of hazardous and difficult-to-detect series arc fault
conditions.
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