Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Fabrication of NiTi shape memory alloy by Micro-FAST

Huang, Kunlan and Qin, Yi and Zhao, Jie and Bin Zulkipli, Muhammad and Hijji, Hasan (2015) Fabrication of NiTi shape memory alloy by Micro-FAST. In: 4th International Conference on New Forming Technology (ICNFT 2015). MATEC Web of Conferences . EDP Sciences. ISBN 9782759818235

Text (Huang-etal-ICNFT2016-Fabrication-of-NiTi-shape-memory-alloy-by-Micro-FAST)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (554kB) | Preview


A NiTi shape memory alloy, known as nitinol, has been intensively studied for last five decades. The NiTi alloy with large size is commonly produced by vacuum sintering, thermal explosion mode of self-propagating high-temperature synthesis (TE-SHS) and spark plasma sintering (SPS). These methods are, however, rarely utilized for the forming of miniature and micro-sized components and have their own limits and disadvantages, such as long process chains and low efficiency with the processes. In the study reported in this paper, an innovation in rapid powder consolidation technology, called Micro-FAST (combining micro-forming and electric-current activated sintering techniques (FAST)) is introduced for the forming of micro-components in which the loose powders are loaded directly into the die, followed by electric-sintering. In the study, Φ4.0 mm × 4.0 mm miniature cylinders were formed with pre-alloyed NiTi powders. Sintered sample with relative density of 98.65% has been fabricated at a sintering temperature of 1150 °C in a relatively short cycle time (119.5 s). Based on the results of SEM and XRD, it was found that the densified samples with Ni3Ti, NiTi and NiTi2 phases were produced.