Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Separating passing and failing test executions by clustering anomalies

Almaghairbe, Rafig and Roper, Marc (2016) Separating passing and failing test executions by clustering anomalies. Software Quality Journal. pp. 1-38. ISSN 1573-1367

Text (Almaghairbe-Roper-SQJ-2016-Separating-passing-and-failing-test-executions)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB) | Preview


Developments in the automation of test data generation have greatly improved efficiency of the software testing process, but the so-called oracle problem (deciding the pass or fail outcome of a test execution) is still primarily an expensive and error-prone manual activity. We present an approach to automatically detect passing and failing executions using cluster-based anomaly detection on dynamic execution data based on firstly, just a system’s input/output pairs and secondly, amalgamations of input/output pairs and execution traces. The key hypothesis is that failures will group into small clusters, whereas passing executions will group into larger ones. Evaluation on three systems with a range of faults demonstrates this hypothesis to be valid—in many cases small clusters were composed of at least 60 % failures (and often more). Concentrating the failures in these small clusters substantially reduces the numbers of outputs that a developer would need to manually examine following a test run and illustrates that the approach has the potential to improve the effectiveness and efficiency of the testing process.