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We study the problem of optimizing the Shannon mutual information for sources of real quantum
states i.e. sources for which there is a basis in which all the states have only real components. We
consider in detail the sources EM of M equiprobable qubit states lying symmetrically around the
great circle of real states on the Bloch sphere and give a variety of explicit optimal strategies.
We also consider general real group-covariant sources for which the group acts irreducibly on the
subset of all real states and prove the existence of a real group-covariant optimal strategy, extending
a theorem of Davies (E. B. Davies, IEEE. Inf. Theory IT-24, 596 (1978)). Finally we propose
an optical scheme to implement our optimal strategies, simple enough to be realized with present
technology.
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I. INTRODUCTION

There are two principal measures of quality in the quantum detection problem for a given finite number of quantum
states with fixed prior probabilities. One is the minimization of a specified Bayes cost, and the other is the maximiza-
tion of the Shannon mutual information [1,2,3]. The former is useful if one has to reach a decision after performing
a single quantum measurement whereas the latter is more relevant for the problem of transmitting as much classical
information as possible using the given ensemble of states. In this paper we will consider the problem of maximizing
the Shannon mutual information for a certain class of quantum ensembles.

In a general communication setting, let {xi ∈ X} be input letters and let {ξi} be their prior probabilities. Let us
denote output letters by {yj ∈ Y }. Both the Bayes cost and the Shannon mutual information are defined in terms of
the conditional probability P (j|i) of obtaining output yj provided that the letter sent was xi. The former is defined
as

B(X : Y ) =
∑

ij

CijξiP (j|i), (1)

for a Bayes cost matrix [Cij ], while the latter is defined as

I(X : Y ) =
∑

i

ξi
∑

j

P (j|i) log
P (j|i)

∑

k

ξkP (j|k)
. (2)

(Since all the results in this paper are valid for any logarithm base, we shall specify the base only where necessary.)
In classical information theory, the channel matrix [P (j|i)] is given and fixed, characterising the noise in the channel.
In contrast, in a quantum information theoretic context where signal carriers are to be quantum states transmitted
without noise, the channel matrix generally becomes a variable. This is because the act of quantum detection itself
generally has a probabilistic output so the channel matrix is dependent on the choice of quantum detection strategy.
More precisely, the input letters correspond to a set of positive trace class operators of trace one {ρ̂i} on a Hilbert
space Hs. A quantum detection strategy is described by a positive operator-valued measure (POVM) on Hs. A
POVM is any set {π̂j} of hermitian positive operators forming a resolution of the identity:

1



π̂†
j = π̂j , π̂j ≥ 0 ∀j,

∑

j

π̂j = Î . (3)

The detection operator π̂j corresponds to the output letter yj and the conditional probabilities are given by

P (j|i) = Tr(π̂j ρ̂i).

Thus in the quantum context the optimization of I(X : Y ) is carried out with respect to the choice of POVM {π̂j}
for fixed ensemble E = {ρ̂i; ξi} (i.e. with fixed letter states ρ̂i and fixed prior probabilities ξi). The maximum value
of I(X : Y ) is called the accessible information of the ensemble E .

The set P of all POVM’s is a convex set and I(X : Y ) enjoys the following fundamental property:
(CONV): For a fixed ensemble E = {ρ̂i; ξi}, I(X : Y ) is a convex function on P .
A proof of (CONV) is given in theorem 2.7.4 of [4]. Let I(E : A) denote the mutual information obtained from the
POVM A applied to the ensemble E . Then if A is a convex combination of POVMs Ai:

A = p1A1 + · · · pnAn.

it follows from (CONV) that

I(E : A) ≤
∑

i

piI(E : Ai) ≤ max
i
I(E : Ai). (4)

The Bayes cost B(X : Y ) is an affine concave function on the convex set P . Therefore the Bayes cost minimization
problem is a kind of linear programming problem and is expected to have a unique solution. A necessary and sufficient
condition for specifying the optimum solution is known [1,2]. On the other hand, the Shannon mutual information
I(X : Y ) is a nonlinear and convex function on P . The maximization of this quantity is a much harder problem and
only a necessary condition for the optimum is known [1]. Thus the maximization of I(X : Y ) with respect to the
detection strategy {π̂j} is a basic and open problem in quantum information theory.

In this problem, the number of outputs is not necessarily the same as the number of the inputs. The optimum
solution is not necessarily unique either. However it is known that there must be at least one optimum solution which
corresponds to an extreme point of the convex set P . This is due to the convexity of the function I(X : Y ). Such an
extreme point is a set of rank one elements, which means that each π̂j has the form κ |v〉 〈v| where |v〉 is a pure state
and 0 ≤ κ ≤ 1. The number of elements, N , can be bounded by d ≤ N ≤ d2 where d is the dimension of the Hilbert
space Hs of which the input state ensemble {ρ̂i} is made [5]. I(X : Y ) is also possibly maximized at some interior
points of P as well. In that case the number of outcomes may exceed d2. Explicit examples of optimal solutions have
been given for binary ensembles [6,7,8] and for the ensemble of four qubit states with tetrahedral symmetry [5]. The
latter is a specific example of a general result of Davies [5] characterising the form of an optimal strategy for any
symmetrical ensemble whose symmetry group acts irreducibly on the whole state space.

In this paper we will study the accessible information and corresponding optimal strategies for an ensemble EM of
M qubit states with symmetry group ZM , the group of integers modulo M . Some of our results will also apply to

more general ensembles. EM may be explicitly described as follows. Let {
(

1
0

)

,

(

0
1

)

} be the z-spin eigenstates and

write |ψ0〉 =

(

1
0

)

. Let

V̂ ≡ exp(−i π
M
σ̂y) =

(

cos π
M

− sin π
M

sin π
M

cos π
M

)

. (5)

Then EM consists of the M states

|ψk〉 = V̂ k |ψ0〉 =

(

cos kπ
M

sin kπ
M

)

, k = 0, . . . ,M − 1, (6)

taken with equal prior probabilities ξk = 1
M

. Note that these states (in the z-spin basis) involve only real components.
On the Bloch sphere they are equally spaced around a great circle C in the x − z plane consisting of all real states.
The antipodal points which have C as equator, are the two σ̂y eigenstates. Thus EM is clearly symmetrical with
respect to the group ZM whose generator is represented by 2π

M
rotation about the axis joining the σ̂y eigenstates. At

the Hilbert space level the operators V̂ k in Eq. (5) provide a projective unitary representation of ZM (e.g. V̂ M = −I
and c.f. Eq. (7) later).
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This symmetry group does not act irreducibly on the whole state space. Indeed the σ̂y eigenstates are left invariant
by the group action. (Irreducibility on the whole state space requires that the only invariant point is the maximally

mixed state 1
2 Î.) Hence we cannot apply Davies’ theorem [5] to provide an optimal strategy for EM . Nevertheless we

will prove that the conclusion of Davies’ theorem remains true in this case i.e. that there exists a pure state |a0〉 such
that the ZM -symmetric POVM

AM = { 2

M
|ak〉 〈ak| : k = 0, . . . ,M − 1} where |ak〉 = V̂ k |a0〉,

is an optimal strategy for EM . Furthermore we will show that |a0〉 may be taken to be the state orthogonal to |ψ0〉.
The case M = 3 is of particular interest. It is the so-called trine ensemble which has been much studied [9,10,11].

Holevo in 1973 [9] showed that no von Neumann measurement in H2 can be an optimal strategy, demonstrating the
necessity of considering more general POVMs in quantum detection theory. Since that time it has been conjectured
that the strategy A3 above is optimal for the trine source. Our results resolve this conjecture affirmatively.

The strategy AM has M elements. However, as noted above, for ensembles in d = 2 dimensions there is always an
optimal strategy with at most d2 = 4 elements (which does not increase with M). We will show that the ensembles
EM always have an optimal strategy with at most 3 elements and explicit strategies of this form will be described for
all M . If M is even then EM consists of M

2 pairs of orthogonal states. Let {|ξ〉 , |η〉} be any one of these pairs. We
will show that the two-element POVM {|ξ〉 〈ξ| , |η〉 〈η|} (a regular von Neumann measurement) is always an optimal
strategy when M is even. We will also describe further optimal K-element POVMs where K lies between 3 and M .

II. A GROUP-THEORETIC APPROACH

We begin by setting up a group-theoretic formalism for symmetric ensembles, leading to a main result (theorem
1) which applies to symmetric ensembles of real states in any dimension d ≥ 2. An essential requirement in many of
our results will be that various states and unitary operators be real. The requirement that a state or operator be real
has of course, no intrinsic physical meaning. When we speak of real states and real operators we will always mean
simply that there exists a basis of the Hilbert space relative to which all the required objects simultaneously have real

components or real matrix elements.
A projective unitary representation of a group G is an assignment of a unitary operation Ûg to each member of G

satisfying

Ûg1
Ûg2

= eiφ(g1,g2)Ûg1g2
, (7)

where the phases φ(g1, g2) may be chosen arbitrarily. A finite ensemble E of equiprobable (generally mixed) states is
said to be symmetric with respect to the group G, or G-covariant, if the following condition is satisfied: there is a
projective unitary representation {Ûg} of G such that for all g, Ûgρ̂Û

†
g is in E whenever ρ̂ is in E . We write

gρ̂ = Ûg ρ̂Û
†
g , (8)

for the action of g on the state ρ̂. The phases φ(g1, g2) do not appear in Eq. (8) and g1(g2(ρ̂)) = (g1g2)(ρ̂). Note
that, in contrast to Davies [5] we do not require that G parameterises E i.e. G need not act transitively on the set of
states of E . For example, EM is ZM -covariant and the action is transitive, but E2N is also Z2- and ZN -covariant via
non-transitive actions.

A G-covariant POVM A (for the projective unitary representation {Ûg}) is a POVM such that ÛgÂÛ
†
g is in A

whenever Â is in A. We write

gÂ ≡ ÛgÂÛ
†
g , (9)

for the action of g on a POVM element Â. From Eqs. (8) and (9) we see that Tr (Âρ̂) = Tr (gÂ · gρ̂) i.e. the

probability of outcome Â on state ρ̂ is G-invariant. Hence

Tr (gÂ · ρ̂) = Tr (Â · g−1ρ̂), (10)

so that the set of probabilities of the G-shifted outputs gÂ on a fixed input ρ̂ are obtained as a permutation of the
set of probabilities of the unshifted output Â acting on suitably shifted inputs.
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Let E be a G-covariant ensemble with projective unitary representation {Ûg}. We aim to find conditions on {Ûg}
which will guarantee the existence of a G-covariant POVM A = {Âg : g ∈ G} with elements parameterised by G, and

having group action gÂh = Âgh. Thus if e is the identity of G we have

Âg = ÛgÂeÛ
†
g , (11)

and we require

M̂ ≡
∑

g∈G

Âg = Î . (12)

(Later we will take the elements of A to be rank 1 and consider the question of when A is an optimal strategy for E .)

From Eq. (11) we see that M̂ commutes with all the Ûg’s:

ÛgM̂ = M̂Ûg. (13)

Thus if the set {Ûg} acts irreducibly on the state space (i.e. there is no proper invariant subspace) the Schur’s
lemma will guarantee that Eq. (12) holds. This fact is used by Davies [5] to characterise an optimal strategy for any
G-covariant ensemble whose symmetry group acts irreducibly on the whole state space. However this condition of full
irreducibility on the whole state space is not necessary for Eq. (12) to hold. We will use the following more general
form of Schur’s lemma:

Lemma 1: Let {M̂g} be any set of non-singular d by d matrices over some field F which acts irreducibly on the

vector space V = F d (i.e. there is no proper subspace mapped to itself by all the M̂g’s). Suppose that K̂ is any

matrix that commutes with all the M̂g’s:

K̂M̂g = M̂gK̂. (14)

Then:
(a) either K̂ = 0 or K̂ is non-singular,

(b) If K̂ has a non-zero eigenvalue λ in F , then K̂ = λÎ .

Proof: (a) Let K̂(V ) denote the image of V under the map K̂ and similarly for M̂g(V ). Since M̂g is non-singular

we have M̂g(V ) = V . By Eq. (14) we have M̂gK̂(V ) = K̂M̂g(V ) = K̂(V ) i.e. K̂(V ) is an invariant subspace. Hence

either K̂(V ) = 0 (in which case K̂ = 0) or else K̂(V ) = V (in which case K̂ is non-singular).

(b) If K̂ has eigenvalue λ in F then B̂ = K̂ − λÎ is singular. Also B̂M̂g = M̂gB̂ for all g. Hence by (a), B̂ must be

zero i.e. K̂ = λÎ.
We will apply this lemma with F = IR to obtain useful results about G-covariant ensembles of real states whose

group G acts irreducibly only on the restricted set IRd of real states (but not necessarily irreducibly on the full state

space). This is the case for our ensembles EM . Let |G| denote the size of G and let d = Tr Î be the dimension of the
Hilbert space.

Lemma 2: Suppose that {Ûg} is a projective unitary representation of G such that Ûg are all real matrices and

{Ûg} acts irreducibly on IRd. Let |v〉 ∈ IRd be any real state. Write

Âg =
d

|G| Ûg |v〉 〈v| Û †
g .

Then {Âg : g ∈ G} is a G-covariant POVM i.e.
∑

g∈G Âg = Î.

Proof: Let M̂ =
∑

g∈G Âg. Then M̂ is a real matrix and M̂Ûg = ÛgM̂ for all g ∈ G. Also M̂ is a hermitian

positive matrix (being a sum of projectors with positive coefficients) so it has a real positive eigenvalue λ > 0. By

the previous lemma, M̂ = λÎ . Since Tr Âg = d
|G| for all g, we get Tr M̂ = d = Tr Î so λ = 1.

Theorem 1: Let E be any ensemble of equiprobable real states in dimension d. Suppose that E is G-covariant with
respect to a projective unitary representation {Ûg} of real matrices which acts irreducibly on IRd. Then there exists

a real pure state |v〉 such that the G-covariant POVM D = {D̂g : g ∈ G} defined by

D̂g =
d

|G| Ûg |v〉 〈v| Û †
g ,

is an optimal strategy for E .
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Proof: We will work in the basis with respect to which the states of E and the matrices Ûg have real entries. Let A =

{Â1, . . . , Ân} be any optimal POVM for E . We will transmogrify A into the required form while preserving optimality.

First strip off all imaginary parts of the entries of the matrices Âk. Let Ãk = Re(Âk) and Ã = {Ã1, . . . , Ãn}. Then

Ã is again a POVM and has real symmetric matrices as elements. (To see that Ãk is a positive matrix note that Ak

positive implies that the complex conjugate Â∗
k is positive so Ãk = 1

2 (Âk + Â∗
k) must be positive. Also

∑

Âk = Î and

Î is real so
∑

Ãk = I too.) Next note that Tr Âkρ̂ = Tr Ãkρ̂ for any real state ρ̂ (since Im(Âk) is antisymmetric) so

Ã remains an optimal strategy.
In general Ã will not have rank 1 elements even if A had rank 1 elements. Thus decompose each Ãk into its rank 1

eigenprojectors (multiplied by the corresponding eigenvalues) which are necessarily real as the eigenvalues/vectors of

any real symmetric matrix are real. Then form the larger POVM B = {B̂1, . . . , B̂m} comprising all the scaled rank 1
eigenprojectors above. Such a refinement of a POVM can never decrease the mutual information so B with real rank
1 elements, is still optimal.

Now look at

Ĉkg =
1

|G|gB̂k for g ∈ G and k = 1, . . . ,m. (15)

Note that
∑

kg Ĉkg = Î since
∑

B̂k = Î and gÎ = Î for all g. Let C = {Ĉkg} be the corresponding POVM with |G|m
elements. Thus C is G-covariant but the action of G is not transitive. We finally aim to cut down C to a smaller
optimal G-covariant POVM with elements labeled by G.

Let I(E : A) denote the mutual information obtained from any POVM A applied to any ensemble E . First we
show that I(E : C) = I(E : B) so that C remains optimal. Let us label the inputs by i ∈ I and denote conditional
probabilities for C by P (kg|i). Denote the conditional probabilities for B by PB(k|i) and let ξ be the constant prior
input probability. Then

P (kg|i) = Tr Ĉkg ρ̂i =
1

|G| Tr gB̂k · ρ̂i.

According to Eq. (10), for each fixed g and k the resulting set of probabilities labelled by i ∈ I, will be just a
permutation of the set PB(k|i), rescaled by 1

|G| . Thus

∑

l

ξP (kg|l) =
1

|G|
∑

l

ξPB(k|l),

will be independent of g and also

∑

i

P (kg|i) log
P (kg|i)

ξ
∑

l P (kg|l) =
1

|G|
∑

i

PB(k|i) log
PB(k|i)

∑

l ξPB(k|l) ,

will be independent of g. The mutual informations I(E : C) and I(E : B) are given by (c.f. Eq. (2)):

I(E : C) =
∑

i

ξ
∑

kg

P (kg|i) log
P (kg|i)

ξ
∑

l P (kg|l) ,

I(E : B) =
∑

i

ξ
∑

k

PB(k|i) log
PB(k|i)

ξ
∑

l PB(k|l) .

On substituting the above G-invariant expressions into I(E : C) we readily get I(E : C) = I(E : B). (Our argument is
actually an explicit example of the claim in lemma 5 of [5]). Hence C remains optimal.

Finally note that for each i, B̂i/(Tr B̂i) is a real pure state so by lemma 2,

Di =

{

d

|G|
gB̂i

Tr B̂i

: g ∈ G

}

,

is a POVM for each i. Now Tr B̂i

d
Di = { 1

|G|gB̂i : g ∈ G} so C is a convex combination

5



C =

m
∑

i=1

Tr B̂i

d
Di.

Hence by Eq. (4)

I(E : C) ≤ max
i
I(E : Di).

Since C was optimal it follows that at least one of the Di’s is optimal. This gives an optimal G-covariant POVM with
real rank 1 elements, parameterised by G, completing the proof.

III. OPTIMAL STRATEGIES FOR EM

We now return to the ZM -covariant ensemble EM in 2 dimensions, comprising the states

|ψk〉 =

(

cos kπ
M

sin kπ
M

)

, k = 0, . . . ,M − 1,

with equal prior probabilities 1
M

. According to theorem 1, there must exist an optimal ZM -covariant POVM A =

{Â0, . . . , ÂM−1} with M real rank 1 elements. The elements will have the form Âj = |aj〉 〈aj | with

|aj〉 = V̂ j |a0〉 =

√

2

M

(

cos(θ + jπ
M

)

sin(θ + jπ
M

)

)

, j = 0, . . . ,M − 1, (16)

and V̂ is given in Eq. (5). The conditional probabilities p(j|k) = | 〈aj |ψk〉 |2 may be readily computed and after some
rearrangement we obtain the mutual information I(θ) explicitly as

I(θ) =
1

M

M−1
∑

k=0

(1 + cos(2θ − 2kπ

M
)) log(1 + cos(2θ − 2kπ

M
)). (17)

In this section, the base of the logarithm is taken as e. (For this base the numerical value of Eq. (17) is the amount
of information in nats rather than bits.) From the symmetry, I(θ) is a periodic function with period π

M
. Figure 1

shows numerical plots of I(θ) for M = 2, 3, 4 and 5 and illustrates the following basic property:
Lemma 3: For each M , I(θ) has a global maximum at θ = π

2 .

Proof: Since | cos(2θ − 2kπ
M

)| < 1, I(θ) can be expanded by using the formula

(1 + x) ln(1 + x) = x+

∞
∑

n=2

(−1)n

n(n− 1)
xn, |x| < 1, (18)

We get

I(θ) =
1

M

M−1
∑

k=0

[

cos(2θ − 2kπ

M
) +

∞
∑

n=2

(−1)n

n(n− 1)
cosn(2θ − 2kπ

M
)
]

=
1

M

∞
∑

n=2

(−1)n

n(n− 1)

M−1
∑

k=0

cosn(2θ − 2kπ

M
).

since
∑M−1

k=0 cos(2θ − 2kπ
M

) = 0. Next we separate out the even and odd parts of the series and replace powers of
cosines by multiple angle cosines to get:

I(θ) =
1

M

∞
∑

n=1

(−1)2n

2n(2n− 1)

M−1
∑

k=0

cos2n(2θ − 2kπ

M
)

+
1

M

∞
∑

n=1

(−1)2n+1

(2n+ 1)2n

M−1
∑

k=0

cos2n+1(2θ − 2kπ

M
)

6



=
1

M

∞
∑

n=1

(−1)2n

2n(2n− 1)

M−1
∑

k=0

1

22n−1

{1

2

(

2n
n

)

+

n−1
∑

l=0

(

2n
l

)

cos

[

(2n− 2l)(2θ− 2kπ

M
)

]

}

+
1

M

∞
∑

n=1

(−1)2n+1

(2n+ 1)2n

M−1
∑

k=0

1

22n

{

n
∑

l=0

(

2n+ 1
l

)

cos

[

(2n+ 1 − 2l)(2θ − 2kπ

M
)

]

}

, (19)

Then recall that

M−1
∑

k=0

cos

(

L
2kπ

M

)

=

{

M for L/M = q (integer)
0 for L/M 6= integer

. (20)

Applying this to Eq. (19) with L = 2n− 2l and L = 2n+ 1 − 2l in the even and odd series, we get:

I(θ) =

∞
∑

n=1

(−1)2n

2n(2n− 1)22n−1

[1

2

(

2n
n

)

+

n−1
∑

l=0

∞
∑

q=0

(

2n
l

)

cos(2θqM)δ2n−2l,qM

]

+
∞
∑

n=1

(−1)2n+1

(2n+ 1)2n22n

[

n
∑

l=0

∞
∑

q=0

(

2n+ 1
l

)

cos(2θqM)δ2n+1−2l,qM

]

=

∞
∑

n=1

1

2n(2n− 1)22n

(

2n
n

)

+

∞
∑

q=0

f(qM)(−1)qMcos(2θqM), (21)

where

f(qM) =

∞
∑

n=1

n−1
∑

l=0

(

2l+ qM
l

)

(2l + qM)(2l+ qM − 1)22l+qM−1
(δ2n−2l,qM + δ2n+1−2l,qM ) . (22)

Since f(qM) > 0, I(θ) is maximized when (−1)qMcos(2θqM) = 1, that is, θ = π
2 for all M .

0.2

0

0.4

0.6

I(
θ

 )
  
  
[n

at
s]

ππ/20

θ

M  =2

M  =4

M  =3

M  =5

FIG. 1. The Shannon mutual information I(θ) in nats versus the optimization parameter θ for M =2, 3, 4 and 5.

Hence in general an optimal strategy for EM consists of choosing a real rank 1 POVM with elements Âk lying in
directions orthogonal to the input states |ψk〉. This POVM will be denoted by AM . The output Âk signifies with
certainty that the input was not |ψk〉 but leaves a residual uncertainty in the remaining signal states.

For a given ensemble E the optimal strategy is not unique and in practice it may be of interest to find optimal
POVMs with the minimum number of elements. The G-covariant optimal POVM above has M elements and we
note here some ways of reducing this number using the group theoretic approach. In the next section, by different
methods, we will show that 3 elements always suffice for any real qubit source, and develop corresponding strategies
for the EM ’s.
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Lemma 4: Suppose that k 6= 1 divides M exactly. Then there is a Zk-covariant optimal POVM for EM with k real
rank 1 elements.

Proof: Since k divides M , ZM has a subgroup isomorphic to Zk and so EM is Zk-covariant. Since k 6= 1, the action
of Zk contains a non-trivial rotation so it acts irreducibly on IR2. Thus theorem 1 immediately gives the required
result.

Remark: Lemma 4 may also be obtained by a convexity argument as follows. We will illustrate the idea with the
specific example of M = 15 and k = 3. The general case is a straightforward generalisation. Z15 = {0, 1, . . . , 14} has

the subgroup {0, 5, 10} isomorphic to Z3. Let A15 = {Â0, Â1, . . . , Â14} be the optimal strategy given by theorem 1

and lemma 3, with the direction of Âk being orthogonal to the kth state of E15. According to lemma 2, the three
directions 0,5,10 corresponding to the subgroup, may be used to define a POVM. We just need to rescale Â0, Â5 and
Â10 so that they add up to Î. The scaling factor is M

k
= 5. Thus B0 = {5Â0, 5Â5, 5Â10} is a POVM. Now Î is always

G invariant so we can apply the group elements l = 1, 2, 3 and 4 of Z15 to B0 to obtain POVMs

Bl ≡ lB0 = {5Âl, 5Âl+5, 5Âl+10} for l = 0, 1, 2, 3, 4.

Note that the Bl’s have elements parameterised by the cosets of Z3 in Z15. Also by symmetry of the construction,
I(E15 : Bl) is independent of l. Furthermore A15 is a uniform convex combination of the Bl’s

A15 =

4
∑

l=0

1

5
Bl,

so by Eq. (4):

I(E15 : A15) ≤ max
l
I(E15 : Bl).

Since A15 was optimal we see that Bl is optimal for each l. This gives the result of lemma 4 and also identifies the
directions of the k element POVM as being any chosen symmetrical set of k directions orthogonal to corresponding
states of EM .

An immediate special case is:
Corollary: If M is even then EM is made up of M

2 pairs of orthogonal states. The von Neumann measurement
defined by any one of these orthogonal pairs is an optimal strategy for EM .

Thus if M is composite we can significantly reduce the number of elements in our optimal strategy but if M is
prime then this number remains large. In the next section we give a different approach to reducing the number of
elements, showing that just 3 elements always suffices for any ensemble of real qubit states.

IV. OPTIMAL POVMS WITH 3 ELEMENTS

Davies [5] has shown that any ensemble in d dimensions has an optimal strategy with N elements where d ≤ N ≤ d2.
This is directly based on (CONV), that is, I(X : Y ) is a convex function on the convex set P of all POVMs. Because
of this, I(X : Y ) will always take its maximum value at an extreme point of the convex set P (and also possibly at
some interior points as well). Each extreme point of P consists of N rank 1 elements bounded by d ≤ N ≤ d2. If we
restrict attention to only real ensembles then this upper bound on N can be improved as follows [12].

Lemma 5: Let E be any ensemble of real states in d dimensions. Then the Shannon mutual information can be
maximized by a POVM with N elements where d ≤ N ≤ d(d+ 1)/2.

Proof: The proof proceeds along the same lines as the original one in ref. [5] with a slight replacement. For any
POVM {π̂j} write π̂j = µjdπ̄j where Trπ̄j = 1 so

∑

j

µj π̄j = Î/d,
∑

j

µj = 1. (23)

Let X be the (compact convex) set of all positive hermitian operators with trace 1 (such as the π̄j ’s). Since I(E : A)
is a convex function on the set P of all POVMs its maximum is attained at an extreme point of P . The essential
point of the original proof in ref. [5] is that every extreme point of P has D + 1 rank 1 elements where D is the real
dimension of X . In the case of general ensembles D = d2 − 1. In our case of real ensembles the members of X and

P can be restricted to real matrices so X comprises real symmetric trace 1 matrices and D = d(d+1)
2 − 1. Hence the

extreme points of P have ≤ d(d+1)
2 elements.
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Thus for the real ensembles EM with d = 2, POVMs with three real elements suffice to provide an optimal strategy.
To describe such a POVM, we first introduce the three real (un-normalised) vectors

|ω0〉 = c

(

1
0

)

, (24a)

|ω1〉 = a

(

cosϕa

sinϕa

)

, (24b)

|ω2〉 = b

(

cosϕb

sinϕb

)

, (24c)

where the first vector lies along the first basis direction and the remaining two are in general position. Imposing the
condition

∑

j |ωj〉〈ωj | = Î we get

c =
√

2 − a2 − b2, (25a)

a2 =
cosϕb

sinϕasin(ϕa − ϕb)
, (25b)

b2 =
cosϕa

sinϕbsin(ϕb − ϕa)
, (25c)

and

0 ≤ a2 + b2 ≤ 2. (25d)

Once the angles ϕa and ϕb have been chosen, a, b and c are fixed. Finally we rotate these vectors around the y-axis
through an angle θ to make the general POVM with three real rank 1 elements:

ω̂j(θ) ≡ |ωj(θ)〉〈ωj(θ)|, (26a)

|ωj(θ)〉 = V̂ (θ)|ωj〉, V̂ (θ) ≡ exp(−iθσ̂y). (26b)

This gives the most general POVM {ω̂0(θ), ω̂1(θ), ω̂2(θ)} in terms of three independent parameters ϕa, ϕb and θ.
We are now in a position to maximize the Shannon mutual information of EM with (at most) three-element POVMs.

We first give a useful preliminary lemma.
Lemma 6: Let A = {λ2

a |a〉 〈a|} be any POVM with rank 1 elements labelled by a where 0 < λa ≤ 1 is real and

|a〉 =

(

cos θa

sin θa

)

in the z-spin basis. Then the mutual information for EM is given by

I(EM : A) =
∑

a

λ2
a

2
I(θa) (27)

where I(θ) is the function given in Eq. (17).
Proof: The states |ψk〉 of EM given in eq. (6) lead to the conditional probabilities

P (a|k) = λ2
a| 〈ψk|a〉 |2 =

λ2
a

2
(1 + cos(2θa − 2kπ

M
))

Substituting these into eq. (2) readily yields the formula eq. (27) after a little algebra.
Theorem 2: The Shannon mutual information of EM (for M > 2) is maximized by the POVM W = {ω̂∗

j =
|ω∗

j 〉〈ω∗
j | : j = 0, 1, 2} where

|ω∗
0〉 =

(

0√
2 − a2 − b2

)

, (28a)

|ω∗
1〉 = a

(

−sin(mπ
M

)
cos(mπ

M
)

)

, (28b)

|ω∗
2〉 = b

(

sin(nπ
M

)
cos(nπ

M
)

)

, (28c)
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and

a2 =
cos(nπ

M
)

sin(mπ
M

)sin( (m+n)π
M

)
≥ 0, (29a)

b2 =
cos(mπ

M
)

sin(nπ
M

)sin( (m+n)π
M

)
≥ 0. (29b)

Here m and n are any positive integers satisfying

0 ≤ a2 + b2 ≤ 2. (29c)

In some cases one of a, b and
√

2 − a2 − b2 is zero and the POVM has only two elements.
Proof: For the three element POVM W(θ, ϕa, ϕb) = {ω̂0(θ), ω̂1(θ), ω̂2(θ)} with rank 1 elements, lemma 6 immedi-

ately gives

I(EM : W) = (1 − a2

2
− b2

2
)I(θ) +

a2

2
I(θ + ϕa) +

b2

2
I(θ + ϕb)

Hence I(EM : W) ≤ maxθ I(θ). By lemma 3 this maximum is I(π
2 ), the accessible information of EM . Furthermore

I(θ) is periodic in θ with period π
M

. Hence we can achieve I(EM : W) = I(π
2 ) by setting θ = π

2 and choosing φa and
φb to be any integer multiples of π

M
. This gives Eqs. (28). Eqs. (29) are just the condition for {ω̂∗

j } to be a POVM.
From this theorem we can develop various kinds of optimal strategies. We noted previously in corollary 1 that if M

is even, then there exists an optimal strategy based on a pair of orthogonal directions. This also follows from theorem
2: if M = 4L− 2 with L = 1, 2, . . . then we may take n = 2L− 1 giving a = 0 and a 2-element POVM based on the

directions

(

0
1

)

and

(

1
0

)

. If M = 4L with L = 1, 2, . . ., we may take m = n = L giving
√

2 − a2 − b2 = 0 and

an optimal POVM based on the directions

(

−1
1

)

and

(

1
1

)

. In both cases the pair of directions coincides with an

orthogonal pair of states of EM .
If M is odd, at least 3 outputs are required. In the case of M = 3 we get an optimum strategy with three elements

of equal norm. This coincides with our previous result A3 of theorem 1 and lemma 3. The cases of M = 5 and M = 7
are more interesting. In both cases, the optimum strategies consist of the three elements with the two different norms
(in contrast to the ZM -covariant strategies of theorem 1). A solution for M = 5 is shown in Fig. 2. The POVM
elements are represented by the thick solid lines and the dashed lines represent the input states. (Note that, for ease
of presentation these dashed lines representing the states of EM – symmetrically distributed around a whole circle –
correspond to the vectors (−1)k |ψk〉 rather than the original vectors in Eq. (6)). According to choices of parameters
(m,n) in theorem 2, there can be several configurations of the POVM directions. But by the symmetry of E5 they all
lie in the same position relative to the ensemble as a whole, characterized by a2 = b2 = 1/(2sin2 2π

5 ) as shown in Fig.
2.

|ρ4〉

|ρ3〉

|ρ2〉

|ρ1〉|ω0〉

|ρ0〉

|ω2〉|ω1〉

FIG. 2. The optimal POVM directions (thick solid lines) given by theorem 2 in the case of M = 5. The input states are
represented as (−1)k |ψk〉 by the dashed lines whose lengths correspond to a unit state vector. The lengths of the thick solid
lines are scaled according to the normalization factors of the corresponding POVM elements.
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Fig. 3 shows the case of M = 7. There are now two inequivalent classes of POVM element directions. One
corresponds to a2 = b2 = 1/(2sin2 2π

7 ) where the angle between the two measurement vectors directed downward is 2π
7

(the left figure), and the other corresponds to a2 = b2 = 1/(2sin2 3π
7 ) where the angle between the two measurement

vectors directed downward is 3π
7 (the right figure).

|ρ2〉

|ρ0〉

|ρ1〉

|ρ3〉

|ρ4〉

|ρ5〉
|ρ6〉

|ω0〉

|ω1〉
|ω2〉

|ω1〉

|ω0〉
|ρ2〉

|ρ0〉

|ρ1〉

|ρ3〉

|ρ4〉

|ρ5〉
|ρ6〉

|ω2〉

FIG. 3. The two inequivalent optimal POVMs in the case of M = 7. The POVM directions and input states are represented
by thick and dashed lines respectively according to the conventions of Fig. 2.

Lemma 6 and theorem 2 may be used to provide a further variety of optimal K-element POVMs for EM where K
is between 3 and M :

Lemma 7: Let A be any POVM as described in lemma 6 for which all angles θa have the form

θa =
π

2
+ ka

π

M
where ka is an integer (30)

Then A is an optimal strategy for EM .
Proof: Since I(θ) is periodic with period π

M
we have I(θa) = I(π

2 ) for all a. Also
∑

λ2
a = 2 so that Eq. (27)

immediately gives I(EM : A) = I(π
2 ) i.e. A is optimal.

Now note the following facts:
(a) All POVMs in theorem 2 satisfy Eq. (30).

(b) If A = {Âi} is any POVM satisfying Eq. (30) then any ZM−shifted version Al of A, defined for each l ∈ ZM by

Al = {V̂ lÂiV̂
†l}

is a POVM also satisfying Eq. (30). (The angles θa are just shifted by lπ
M

).
(c) If A1, . . . ,AN is any list of POVMs satisfying Eq. (30) then any convex combination of the Ai’s will satisfy Eq.
(30). (In forming convex combinations we naturally amalgamate POVM elements from different Ai’s that lie in the
same direction.)

Hence any convex combination of any ZM−shifted versions of the POVMs in theorem 2 will be an optimal strategy.
For example, let us consider a convex combination between two POVM’s in the case of M=5. The following {ω̂j} is
one of the optimum detection strategies from theorem 2:

ω̂0 = (1 − a2)(Î − σ̂z), (31a)

ω̂1 =
a2

2
(Î − sin(

4π

5
)σ̂x − cos(

4π

5
)σ̂z), (31b)

ω̂2 =
a2

2
(Î − sin(

6π

5
)σ̂x − cos(

6π

5
)σ̂z), (31c)

where a2 = 1/(2sin2 2π
5 ). The convex combination between {ω̂j} and {V̂ 2ω̂jV̂

†2} forms the resolution of the identity

(1 − λ)

2
∑

j=0

ω̂j + λ

2
∑

k=0

V̂ 2ω̂kV̂
†2 = Î (λ ≥ 0), (32)

and we define
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µ̂0 = (1 − λ)ω̂0 + λV̂ 2ω̂2V̂
†2, (33a)

µ̂1 = (1 − λ)ω̂1 + λV̂ 2ω̂0V̂
†2, (33b)

µ̂2 = (1 − λ)ω̂2, (33c)

µ̂3 = λV̂ 2ω̂1V̂
†2. (33d)

(Note that ω̂0 ∝ V̂ 2ω̂2V̂
†2 and ω̂1 ∝ V̂ 2ω̂0V̂

†2.) This gives a 4-element POVM {µ̂j} which maximizes the Shannon
mutual information for E5.

The strategies in theorem 2 are not generally ZM−covariant but they correspond to extreme points of P . On the
other hand the ZM−covariant strategy of theorem 1 is generally not an extreme point of P . The ZM -covariant POVM
of theorem 1 can be related to the asymmetrical 3-element POVM of theorem 2 as follows. Note first that if W = {ω̂j}
is any optimal POVM then so is mW = {V̂ mω̂j V̂

†m} for any m ∈ ZM . Indeed

I(EM : W) = I(EM : mW) (34)

since the set of states of EM is invariant under the action of ZM . Given any one of the N (=2, 3)-element POVMs
{ω̂∗

j } defined in theorem 2, one can consider the resolution of the identity

1

M

M−1
∑

m=0

N−1
∑

j=0

V̂ mω̂∗
j V̂

†m = Î . (35)

But the MN elements {V̂ mω̂∗
j V̂

†m} are proportional to each other in groups ofN and these groups may each naturally
be summed and assigned a single element. This leads to the covariant M -element POVM which is just AM of theorem
1 and lemma 3. In this sense AM may be thought of as a convex combination

AM =
∑

k∈ZM

1

M
kW

where W is any one of the POVMs in theorem 2. If we know that AM is optimal then Eqs. (34) and (4) will imply
that W is optimal too. This provides an alternative proof of theorem 2 if we already know theorem 1 and lemma
3. On the other hand, if conversely we are given the result of theorem 2 (which uses lemma 3) then the accessible
information of EM must be I(π

2 ) so AM must be optimal (since I(EM : AM ) = I(π
2 ) by definition of I(θ) and AM ).

V. IMPLEMENTATION

The optimal POVMs AM and W given in theorems 1 and 2, may be of interest from the viewpoint of putting
quantum detection theory to the test. None of the POVMs for attaining maximum mutual information have been
demonstrated by experiment yet. So far, only two kinds of optimal quantum detection scenarios have been confirmed
experimentally. One is the Helstrom bound as the minimum average error probability [2], and the other is the
Ivanovic-Dieks-Peres bound which gives the maximum probability for error-free detection, sometimes referred as the
unambiguous measurement [13,14,15,16]. (A concise review of both criteria can be found in ref. [17].) The former
scenario was first demonstrated experimentally by Barnett and Riis [18]. The latter has been demonstrated in the
laboratory by Huttner et al. [19]. Both of these are concerned with discrimination between binary nonorthogonal
states. In our case of AM and W for EM with M odd, we are dealing with essentially nonorthogonal measurement
vectors in H2, which is called a generalized measurement. No von Neumann measurement can be an optimal strategy
for EM with M odd. This case is of particular interest here. It is already well known that this kind of generalized
measurement can be converted into a standard von Neumann measurement in a larger Hilbert space by introducing
an ancillary system. This so-called Naimark extension ensures that any POVM can be physically implemented in
principle [2,3].

In this section we propose an optical scheme to demonstrate the optimal POVMs specified by W for EM made of
single mode photon polarization states. As seen in the previous section, W has three outcomes at most and suffices
to provide an optimal strategy for all EM ’s. For M odd, it is always possible to find the optimal strategy with m = n,
that is, a2 = b2 = 1/(2sin2 mπ

M
) in theorem 2 if m is taken as M

4 < m < M
2 . We consider the implementation of this

particular detection strategy. The measurement vectors can be represented by
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|ω∗
0〉 = −sin

γ

2
| ↓〉, (36a)

|ω∗
1〉 = − 1√

2
| ↑〉 +

1√
2
cos

γ

2
| ↓〉, (36b)

|ω∗
2〉 =

1√
2
| ↑〉 +

1√
2
cos

γ

2
| ↓〉, (36c)

where

cos
γ

2
≡ cot

mπ

M
, sin

γ

2
≡ −

√

1 − cot2
mπ

M
, (37)

and | ↑〉 and | ↓〉 are orthonormal bases of polarization. The first step is to make orthogonal measurement vectors by
embedding {|ω∗

0〉, |ω∗
1〉, |ω∗

2〉} into a three or higher dimensional Hilbert space. One possible physical prescription is
to make an optical circuit with two input ports, say, “a” and “b”. The signal state is guided into the port “a”, while
the port “b” is initialized as the vacuum state. We can then consider the four dimensional Hilbert space spanned by
the orthonormal basis {|Ej〉},

|E0〉 ≡ | ↑〉a|0〉b, (38a)

|E1〉 ≡ | ↓〉a|0〉b, (38b)

|E2〉 ≡ |0〉a| ↑〉b, (38c)

|E3〉 ≡ |0〉a| ↓〉b, (38d)

where |0〉 is the vacuum state and the subscripts a and b indicate the port “a” and “b”, respectively. A natural
orthogonalization is

|Ω0〉 ≡ |ω∗
0〉a|0〉b + cos

γ

2
|0〉a| ↑〉b, (39a)

|Ω1〉 ≡ |ω∗
1〉a|0〉b +

1√
2
sin

γ

2
|0〉a| ↑〉b, (39b)

|Ω2〉 ≡ |ω∗
2〉a|0〉b +

1√
2
sin

γ

2
|0〉a| ↑〉b, (39c)

|Ω3〉 ≡ |0〉a| ↓〉b, (39d)

or equivalently,

|Ω0〉 ≡ −sin
γ

2
| ↓〉a|0〉b + cos

γ

2
|0〉a| ↑〉b, (40a)

|Ω1〉 ≡
1√
2

(

−| ↑〉a|0〉b + cos
γ

2
| ↓〉a|0〉b + sin

γ

2
|0〉a| ↑〉b

)

, (40b)

|Ω2〉 ≡
1√
2

(

| ↑〉a|0〉b + cos
γ

2
| ↓〉a|0〉b + sin

γ

2
|0〉a| ↑〉b

)

, (40c)

|Ω3〉 ≡ |0〉a| ↓〉b. (40d)

It is easy to check that {|Ω0〉, |Ω1〉, |Ω2〉} give the same channel matrix as {|ω∗
0〉, |ω∗

1〉, |ω∗
2〉}, that is, 〈ωj |ψi〉 =

〈Ωj |(|ψi〉a|0〉b) (j = 0, 1, 2). The second step is to decompose the von Neumann measurement {|Ωj〉} into a uni-
tary transformation followed by a measurement in the basis {|Ej〉} in order to find a practical detector structure. We
may write

〈Ω0| ≡ 〈E2|Û2Û1, (41a)

〈Ω1| ≡ 〈E1|Û2Û1, (41b)

〈Ω2| ≡ 〈E0|Û2Û1, (41c)

〈Ω3| ≡ 〈E3|Û2Û1, (41d)

where Û1 and Û2 are given by the matrices
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Û1 ≡







1 0 0 0
0 cosγ

2 sinγ
2 0

0 −sinγ
2 cosγ

2 0
0 0 0 1






, (42)

Û2 ≡









1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0
0 0 0 1









, (43)

in the {|E0〉, |E1〉, |E2〉, |E3〉} -basis representation. Eqs. (41) mean that in the detector, the signal state |ψi〉a|0〉b is

first transformed by Û2Û1, and is then measured in the basis {|Ej〉} which corresponds to the simultaneous measure-

ment with respect to which-path and which-polarization. The final step is to translate Û2Û1 into a practical circuit. In
fact, this unitary transformation can be effected by the simple circuit consisting of passive linear optical devices such
as polarizing beam splitters, polarization rotators, and halfwave plates [20]. The circuit is shown in Fig. 4. The Û2Û1

part consists of four halfwave plates, two polarizing beam splitters, and two polarization rotators. The polarization
rotator represented by the circle with the rotation angle γ performs

R̂y(γ) =

(

cosγ
2 sinγ

2
−sinγ

2 cosγ
2

)

. (44)

The polarizing beam splitter represented by the square functions as a perfect mirror only for ↓-polarization (fast axis
polarization). Light polarized along ↑-polarization (slow axis polarization) passes straight through it perfectly. The
measurement {|Ej〉} is made by photon counting at the four output ports. Note that only a single photon count at
one of the three ports is expected and the outcome |E3〉 is never expected. This structure is valid for any M (the

number of the signals) if one tunes the rotation angle γ in R̂y(γ) according to the value of M (see Eq. (37)). The
circuit is simple enough to be implemented with present technology.

|E0〉
PD1

AA
AA
AA

AA
AA

PD4

PD3

PD2
Port  "a"

π/2

γ
Port  "b"

Halfwave 
 plate

Polarization
 rotator

Polarizing 

beam  splitter

2U 1U

 "a"

 "b"

|E1〉

|E2〉

|E3〉

|ψk〉

|0〉

FIG. 4. The optical circuit implementing W = {ω̂∗

0 , ω̂
∗

1 , ω̂
∗

2}. It consists of the unitary transformation Û2Û1 followed by the
measurement {|Ej〉}. Û2Û1 is effected by four halfwave plates, two polarizing beam splitters, and two polarization rotators.
The measurement {|Ej〉} is made by photon counting at the four output ports.

VI. CONCLUDING REMARKS

We have considered optimal strategies for symmetrical sources of real quantum states, treating in detail the sources
EM of M real qubit states placed symmetrically in the x− z plane around the Bloch sphere. Davies [5] has provided
a general theorem characterising an optimal strategy for any G-covariant source whose group acts irreducibly on the
whole state space. The symmetry group ZM of EM does not act irreducibly on that state space so Davies’ theorem
cannot be directly applied. However we proved an extension of this theorem which applies to G-covariant sources
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of real states for which the group acts irreducibly on the subset of real states (as is the case for EM ). This led to a
ZM -covariant optimal strategy AM for EM .

We also derived alternative optimal strategies W which contain at most three real POVM elements. In deriving
this strategy W we exploited the convexity of I(X : Y ) on the convex set P of all POVMs. These strategies are not
G-covariant in general but correspond to extreme points of P . The small number of elements can be advantageous
for practical implementation of the detection strategies as seen in the preceding section. The G-covariant strategy
is not generally an extreme point of P but for higher dimensions it would seem easier to derive explicit G-covariant
solutions rather than extreme point solutions.

Our results have added to the relatively small number of quantum sources for which optimal strategies are explicitly
known. They may be extended in various straightforward ways (which we have omitted for clarity of presentation).
For example the optimal strategies AM and W for EM remains optimal for the M -state source

{(1 − ǫ) |ψk〉 〈ψk| + ǫ
1

2
Î2 : k ∈ ZM ;

1

M
}

where each pure signal has been corrupted by noise given by the maximally mixed state 1
2 Î2. This mixed state

ensemble is clearly also G-covariant and the process of deriving the optimal strategy for this ensemble is quite the
same as in the pure state case (ǫ = 0) but just multiplying the cosine terms in Eq. (17) by (1 − ǫ). Then the same
strategy remains optimal for the G-covariant mixed state ensemble although the accessible information decreases with
ǫ as expected.

It is perhaps worth briefly contrasting our results of maximizing the mutual information with the problem of
minimizing the average error probability. The latter is defined for EM and any M -element POVM by

Pe = 1 − 1

M

M−1
∑

k=0

P (k|k). (45)

The Pe-optimal strategy is {π̂k} = { 2
M

|ψk〉 〈ψk| : k ∈ ZM}, that is, the POVM based on the state directions
themselves. This is true also for the above mixed state ensemble. (The necessary and sufficient conditions for Pe-
optimality, as given in [1,2], are easily verified for {π̂k}.) Generally Pe-minimization is an essentially different type of
optimization problem from I(X : Y )-maximization.

Within the confines of our formalism, various interesting issues remain unresolved. For example we would like to
know an optimal strategy for the real ZM -covariant source “double-EM” in 4 dimensions comprising the 2-qubit signal
states {|ψk〉 |ψk〉 : k ∈ ZM ; 1

M
}. In this case the symmetry group ZM does not act irreducibly even on the subset of

all real 2-qubit states. Interesting properties of double-E3 have been considered in [11] from the viewpoint of coding
gain of transmittable information.

It is also a remaining difficult problem to optimize a quantum channel over both the a priori probability distribution
of signals and the detection strategy for a fixed set of quantum states. The solution is known only for the binary pure
state channel.
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