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We compare and contrast the error probability and fidelity as measures of the quality of the
receiver’s measurement strategy for a quantum communications system. The error probability is
a measure of the ability to retrieve classical information and the fidelity measures the retrieval of
quantum information. We present the optimal measurement strategies for maximising the fidelity
given a source that encodes information on the symmetric qubit-states.
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I. INTRODUCTION

The principles governing the communication of information by a quantum channel are now well-known [1–3]. The
transmiting party (Alice) selects from a set of signal states |ψj〉 and uses a string of these to encode her message.
These states are known to the receiving party (Bob) who also knows the a priori probabilities pj for selection of each
of the signal states. Bob’s problem is to decide upon an optimal detection strategy. His choice of strategy will depend
on the way in which the information he receives is to be used. In mathematical terms, Bob must choose a strategy
so as to extremise some function of his measurement outcomes and commonly occurring examples are the minimum
error probability or minimum Bayes cost [1–5] and the accessible information [6–10]. These quantities determine the
quality of Bob’s strategy for recovering the classical information associated with Alice’s selection of the transmitted
state.

In this paper we will be concerned with a different measure of Bob’s detection strategy. This quantity, which we
refer to as the fidelity, determines Bob’s ability to access the quantum information contained in Alice’s signal. The
fidelity depends on Bob’s choice of measurement strategy and also on his subsequent selection of a new quantum
state. The extent to which the selected state matches that chosen by Alice will determine Bob’s ability to reconstruct
the selected quantum state. We will introduce the fidelity and compare its properties with those of the more familiar
error probability in the following section. At this stage, we can motivate our idea by considering the familiar problem
of eavesdropping in quantum key distribution [11]. The error probability and fidelity relate, in this case, to the two
principal factors in assessing any eavesdropping strategy. The error probability is simply the probability that the
eavesdropper will fail to learn the state selected by Alice, while the fidelity is the probability that the state selected
by the eavesdropper for transmission to Bob will appear to Bob as the state selected by Alice. In this way, error
probability is related to the security of the classical information encoded by Alice and the fidelity is related to the
likelihood of escaping detection [12].

We have not been able to find general criteria for maximising the fidelity. This maximum fidelity was introduced
by Fuchs [13] who referred to it as the accessible fidelity. For a special class of qubit-states known as the symmetric
states, however, we have been able to derive the strategy that maximises the fidelity. The measurement part of the
optimal strategy is not unique, but includes the strategy that also minimises the error probability [5].

II. FIDELITY AND ERROR PROBABILITY

In a quantum communications channel, Bob’s problem is to distinguish between the set of possible signal states,
|ψj〉 (j = 1, ...M), that Alice may have sent. He does this by performing a measurement the results of which are
associated with the POM elements [1,14] π̂k. There is, of course, no particular reason for the number of possible
measurement outcomes to equal M, the number of possible signal states. The probability that Bob observes the result
‘k’ given that Alice selected the state |ψj〉 is

P (k|j) = 〈ψj |π̂k|ψj〉. (1)

If Bob wishes to determine the signal state then the probability that he will do so correctly is
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Pc =

M
∑

j=1

P (j|j)pj =

M
∑

j=1

〈ψj |π̂j |ψj〉pj . (2)

This quantity is a measure of the success of Bob’s strategy at recovering Alice’s (classical) choice of signal state. The
error probability is simply 1 − Pc:

Pe = 1 −
M
∑

j=1

〈ψj |π̂j |ψj〉pj . (3)

Necessary and sufficient conditions are known for minimising Pe (or maximising Pc) [1–4] although very few explicit
examples of the required POM elements have been given. Some of these minimum error POMs have recently been
implemented optically [15–17].

The fidelity is more closely related to the retrieval of the quantum information ‘|ψj〉’. As a physical picture, consider
Bob to be operating some relay station in a communications channel. He must measure the signal and then, on the
basis of his measurement, he selects a state to retransmit. The fidelity is then a measure of how well the selected
state matches the original signal state selected by Alice. We can see this by considering one of the possible sequence
of events. Let us suppose that Alice has sent the signal state |ψj〉 and that Bob measurement has given the result ‘k’
corresponding to the POM element π̂k. He then selects a state, |φk〉, that depends on the measurement result, for
retransmission. The simplest question that we can ask, to assess the retransmitted state, is “is this state |ψj〉 ?”. The
probability that this question will be answered in the affirmative is just the modulus squared overlap of the signal
state and the retransmitted state, |〈ψj |φk〉|2. The a priori probability that the retransmitted state will pass this test
is the fidelity

F =

M
∑

j=1

∑

k

|〈ψj |φk〉|2〈ψj |π̂k|ψj〉pj . (4)

This quantity determines the quality of the measurement-retransmission strategy adopted by Bob. The strategy
adopted by Bob depends on both his choice of measurement (associated with the POM elements π̂k) and the selection
of the associated retransmission states (|φk〉). A large value of F corresponds to a good strategy while a smaller value
indicates a less good one. The strategy that best extracts the quantum information will be the one that gives the
maximum fidelity. The general principles governing the maximum fidelity are unknown to us although the maximum
fidelity, the associated measurement and retransmission states have been derived for a special case [13]. We will
present strategies for maximising the fidelity for a wider set of possible signal states (the symmetric qubit-states) in
section IV.

III. SYMMETRIC STATES

The symmetric states were introduced for the problems of state discrimination by Ban et. al. [5]. These states,

|ψj〉, are generated from a single state, |ψ1〉, by the action of a unitary operator V̂ :

|ψj〉 = V̂ j−1 |ψ1〉 . (5)

These M states are said to be symmetrical if they are a priori equally likely to have been selected and

V̂ M = Î (6)

so that |ψj+M 〉 = |ψj〉 [18].
The minimum error probability occurs [5] if we adopt the so-called square-root measurement [19–21] for which the

M POM elements are

π̂k = Φ̂−1/2 |ψk〉 〈ψk| Φ̂−1/2, (7)

where

Φ̂ =

M
∑

j=1

|ψj〉 〈ψj | . (8)
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The resulting minimum error probability is then

Pmin
e = 1 − |〈ψ1|Φ̂−1/2|ψ1〉|2. (9)

In this paper we will obtain the maximum fidelity for any symmetric states of a single qubit. We can represent these
states in terms of the orthonormal eigenstates, |±〉 of the unitary operator

V̂ = exp

[

i
2π

M
|−〉 〈−|

]

. (10)

This operator clearly satisfies the requirement Eq. (6) for a symmetric set of states. Our M, equiprobable symmetric
states are

|ψj〉 = cos

(

θ

2

)

|+〉 + exp

(

i
2π

M
(j − 1)

)

sin

(

θ

2

)

|−〉 , (0 ≤ θ ≤ π

2
). (11)

It is helpful to picture these states on the Bloch sphere (see Fig. 1).

ψ
2 ψ

1

µ
1

µ
2

µ
Μ

+

−

ψ
Μ

FIG. 1. The symmetric set of states {|ψj〉}. The square root measurement has POM elements that are proportional to
projectors onto the states {|µj〉}. This measurement minimises the average error probability for distinguishing between the
states.

Each of the states is represented by a point on the surface of the sphere with the polar coordinates, θ and φ,
corresponding to θ and 2πj/M respectively in (Eq. 11). The symmetric states lie on a single circle of the Bloch
sphere at the latitude π/2 − θ. For this set of symmetric states the minimum error probability is obtained by means
of a POM with elements

π̂j =
2

M
|µj〉 〈µj | , (12)

where

|µj〉 =
1√
2

[

|+〉 + exp

(

i
2π

M
(j − 1)

)

|−〉
]

. (13)

These states correspond to points on the equator of the Bloch sphere at the same longitude (φ - coordinate) as the
corresponding signal states |ψj〉 (see Fig. 1). The associated minimum error probability is

Pmin
e = 1 − 1

M
(1 + sinθ) . (14)
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As θ varies between 0 and π/2 this error probability varies between 1−1/M and 1−2/M . These values correspond to
guessing the value ‘j’ when the states all correspond to the single ket |+〉 and the minimum attainable error probability
for symmetric states [4,16] which occurs when the symmetric states lie on the equator of the Bloch sphere.

In the following section we establish the maximum fidelity attainable for this ensemble of states.

IV. MAXIMUM FIDELITY

In seeking to maximise the fidelity it is helpful to write it in the form [13]

F =
∑

k

〈φk|Ôk|φk〉, (15)

where Ôk is the Hermitian operator

Ôk =
1

M

M
∑

j=1

|ψj〉〈ψj |π̂k|ψj〉〈ψj |. (16)

The selection of the retransmission states |φk〉 is now straightforward. The best state to select will be the eigenstate

of Ôk having the largest eigenvalue and the corresponding maximum fidelity is the sum of the maximum eigenvalues
of the operators Ôk [13].

The problem of maximising F is now simply one of selecting the POM or POMs that produce the largest eigenvalue
sum. Naturally, there are constraints associated with the fact that our POM elements must be Hermitian, positive-
semidefinite and must sum to the identity. In seeking the optimal POM, it is sufficient to consider only rank-one
elements correponding to weighted projectors onto pure states [22]. The (rank-one) POM elements can be written in
the form

π̂k = 2wk

[

cos

(

θk

2

)

|+〉 + eiφksin

(

θk

2

)

|−〉
] [

cos

(

θk

2

)

〈+| + e−iφksin

(

θk

2

)

〈−|
]

(17)

or, more simply, as the matrix

π̂k = wk

(

1 + cos θk e−iφk sin θk

eiφk sin θk 1 − cos θk

)

, (18)

where the basis states |+〉 and |−〉 correspond to the column vectors (1, 0)T and (0, 1)T respectively. Here, wk is a
weight factor bounded by 0 ≤ wk ≤ 1. The requirement that the POM elements should sum to the identity places
restrictions in the allowed values of the parameters θk, φk and wk. These take the form:

∑

k

wk = 1, (19)

∑

k

wk cos θk = 0, (20)

∑

k

wkeiφk sin θk = 0. (21)

Our first task is to obtain the greater of the two eigenvalues for each of the operators Ôk. Evaluating the sum in
Eq. (16) and writing the resulting operator in matrix form gives

Ôk =
wk

2

(

(1 + cos θ)(1 + cos θ cos θk) 1

2
sin2 θ sin θk(e−iφk + δM,2e

iφk)
1

2
sin2 θ sin θk(eiφk + δM,2e

−iφk) (1 − cos θ)(1 + cos θ cos θk)

)

, (22)

where δM,2 is the usual Kronecker delta. We see that this matrix has one of two possible forms, one if M > 2 and
one if M = 2. It is simplest to deal these two cases separately.
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A. Case 1: M > 2

If we have more than two signal states then the operator Eq. (22) reduces to

Ôk =
wk

2

(

(1 + cos θ)(1 + cos θ cos θk) 1

2
sin2 θ sin θke−iφk

1

2
sin2 θ sin θkeiφk (1 − cos θ)(1 + cos θ cos θk)

)

. (23)

The two eigenvalues of this matrix are

ν±(θk) =
wk

2

{

1 + cos θ cos θk ±
[

cos2 θ(1 + cos θ cos θk)2 +
1

4
sin4 θ sin2 θk

]1/2
}

, (24)

so the maximum value of the fidelity has the form

F =
∑

k

ν+(θk) =
1

2
+

1

2

∑

k

wk

[

cos2 θ(1 + cos θ cos θk)2 +
1

4
sin4 θ sin2 θk

]1/2

, (25)

where we have used Eqs. (19) and (20). Our remaining task is to maximise this quantity subject to the constraints
that the operators π̂k form a POM Eqs. (19-21). The natural approach to tackling such constrained extremisation
problems is to use Lagrange’s method of undetermined multipliers. Before performing this maximisation we note that
the maximum fidelity Eq. (25) does not depend on the phases φk. This means that the contribution to the fidelity
will be the same for each POM element having the same value of θk. Hence we can easily impose the constraint Eq.
(21) by choosing a POM with N elements for each distinct value of θk satisfying the simpler condition

N
∑

l=1

wl(k)e
iφl = 0, (26)

where wl(k) are the weights associated with the N POM elements for which θ = θk. Hence we will not impose the
constraint Eq. (21) in our variational calculation. In order to impose the remaining constraints, Eqs. (19) and (20),
we introduce the zero-valued quantities

G1 =
∑

k

wk − 1, (27)

and

G2 =
∑

k

wk cos θk. (28)

The extrema of the fidelity will be given by the stationary points of the function

H = F + λ1G1 + λ2G2 (29)

under independent variation of the parameters θk and wk. Here λ1 and λ2 are the undetermined multipliers.
The stationarity condition for variation of H with respect to wk gives

∂H

∂wk
=

1

2

[

cos2 θ(1 + cos θ cos θk)2 +
1

4
sin4 θ(1 − cos2 θk)

]
1

2

+ λ1 + λ2 cos θk = 0. (30)

while variation with respect to θk gives

∂H

∂θk
= − sin θk

wk

2

{

[

cos2 θ(1 + cos θ cos θk)2 +
1

4
sin4 θ(1 − cos2 θk)

]−
1

2

[

cos3 θ + cos θk

(

cos4 θ − 1

4
sin4 θ

)]

+ 2λ2

}

= 0. (31)

The possible solutions of Eq. (31) are (i) wk = 0 corresponding to uninteresting zero POM elements, (ii) sinθk = 0,
corresponding to POM elements that are proportional to |+〉 〈+| and |−〉 〈−|, and (iii) the function in curly parentheses
is zero. This final condition reduces, by use of Eq. (30) to
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cos θk =
4λ1λ2 − cos3 θ

cos4 θ − 1

4
sin4 θ − 4λ2

2

= cosΘ. (32)

which has only one solution.
Remarkably, we can conclude that the strategy for achieving the maximum fidelity depends only on three possible

values of θk, these being 0, π and the, yet to be determined, Θ. Rather than continue with our undetermined
multipliers, the simplest way to proceed is to reformulate the problem in terms of the fidelity F with the constraints
imposed. We do this by specifying N + 2 possible POM elements corresponding to the required values (0, π and Θ)
of θk:

π̂0 = w0

(

2 0
0 0

)

, (33)

π̂π = wπ

(

0 0
0 2

)

, (34)

π̂l = wl

(

1 + cosΘ e−iφl sin Θ
eiφl sin Θ 1 − cosΘ

)

, (l = 1, ..., N). (35)

The fidelity is then

F =
1

2
+
w0

2
cos θ(1 + cos θ) +

wπ

2
cos θ(1 − cos θ) +W

[

cos2 θ(1 + cos θ cosΘ)2 +
1

4
sin4 θ(1 − cos2 Θ)

]
1

2

. (36)

where W =
∑N

l=1
wl. We can impose the constraints, Eqs. (19) and (20), in order to remove w0 and wπ which leaves

us with

F =
1

2
+

1

2
(1 −W ) cos θ − 1

2
W cos2 θ cosΘ +

1

2
W

[

cos2 θ(1 + cos θ cosΘ)2 +
1

4
sin4 θ(1 − cos2 Θ)

]
1

2

. (37)

Extremising this fidelity to obtain the global maximum value now corresponds to satisfying the conditions

∂F

∂W
=

1

2

{

− cos θ − cos2 θ cosΘ +

[

cos2 θ(1 + cos θ cosΘ)2 +
1

4
sin4 θ(1 − cos2 Θ)

]
1

2

}

= 0, (38)

∂F

∂Θ
= − sinΘ

W

2

{

− cos2 θ +

[

cos2 θ(1 + cos θ cosΘ)2 +
1

4
sin4 θ(1 − cos2 Θ)

]−
1

2

[

cos3 θ + cosΘ(cos4 θ − 1

4
sin4 θ)

]

}

= 0. (39)

The solution sinΘ = 0 corresponds to the POM elements Eqs. (33) and (34). Combining the remaining non-trivial
solution with (Eq. 38) leads to the appealingly simple result that cosΘ = 0. Hence the fidelity has the form

F =
1

2
(1 + cos θ) +

W

2

[

(cos2 θ +
1

4
sin4 θ)

1

2 − cos θ

]

. (40)

The maximum value that this can take clearly corresponds to setting W = 1 and hence the global maximum value
that the fidelity can take for symmetric qubit-states is

Fmax = 1 − 1

4
sin2 θ. (41)

This takes its maximum value of unity for θ = 0. This is reasonable as in this case all the signal states correspond
to |+〉 and unit fidelity can always be achieved by choosing the single state |+〉 for retransmission. The fidelity is a
monotonically decreasing function of θ and takes its smallest value of 3/4 for θ = π/2 [13].
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Having determined the maximum value of the fidelity, we now turn our attention to the form of Bob’s strategy for
realising this value. The conditions Θ = π/2 and W = 1 tell us that the optimal POM will have N elements of the
form

π̂l = wl

(

1 e−iφl

eiφl 1

)

= wl

(

|+〉 + eiφl |−〉
) (

〈+| + e−iφl 〈−|
)

, (42)

where the parameters wk and φk satisfy the constraints

N
∑

l=1

wl = 1, (0 ≤ wl ≤ 1) (43)

N
∑

l=1

wle
iφl = 0, (44)

corresponding to Eqs. (19) and (20) respectively. The problem of maximising the fidelity does not constrain the choice
of POM any further than this and so any POM with elements of the form (Eq. 42) and satisfying the conditions Eqs.
(43) and (44) will maximise the fidelity. Important examples include the symmetric POM with elements

π̂l =
1

N

(

1 exp
[

−i(α+ 2πl
N )

]

exp
[

i(α+ 2πl
N )

]

1

)

, (N ≥ 2) (45)

where α is any desired phase. We note that the choice N = 2 corresponds to a simple von Neumann measurement.
Furthermore, setting N = M and α = 0 shows that the square-root measurement, with POM elements Eq. (12) can
also maximise the fidelity. An example of the states corresponding the POM with elements Eq. (45) is depicted in
Fig. 2.

ψ
j

φ
1

φ
2

φ
3

}

µ
1

µ
2

µ
3

+

−
FIG. 2. Optimal strategy that attains the maximum fidelity. There are various possible optimal measurement strategies as

explained in the text. In this figure, the measurement with three outputs (M = 3) and α = 0, and the corresponding retrans-
mission states are shown. The retransmission states are positioned at the same longitude (φ coordinate) as the corresponding
POM elements but are further north than the original signal states.

The retransmission states |φl〉 that maximise the fidelity correspond to the maximum-eigenvalue eigenstates of the
operator Eq. (23) with θk = Θ = π/2. This operator is
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Ôl =
wl

2

(

1 + cos θ 1

2
e−iφl sin2 θ

1

2
eiφl sin2 θ 1 − cos θ

)

(46)

and the corresponding maximum eigenvalue is

ν+(l) = wl

(

1 − 1

4
sin2 θ

)

. (47)

Solving the for the associated eigenvector gives the required retransmission state associated with the measurement
outcome ‘k’:

|φl〉 =
1√
2

(

1 + cos2 θ
)−

1

2

[

(1 + cos θ) |+〉 + eiφl (1 − cos θ) |−〉
]

= cos
(χ

2

)

|+〉 + eiφl sin
(χ

2

)

|−〉 . (48)

These states are depicted on the Bloch sphere in Fig. 2. They are positioned at the same longitude (φ coordinate)
as the corresponding POM elements but are further north than the original signal states, having a lattitude π/2 − χ
where

cosχ =
2 cos θ

1 + cos2 θ
. (49)

We can now summarise our strategies for obtaining the maximum fidelity. Any POM with elements given by Eq.
(45) constitutes an optimum measurement. These operators will form a POM if the conditions Eqs. (43) and (44)
are satisfied. The fidelity will be maximised if the retransmission state selected on the basis of a the measurement
outcome ‘l’ has the polar coordinates (χ, φl) on the Bloch sphere, with χ given by Eq. (49).

B. Case 2: M=2

If M = 2 then we have only two possible signal states:

|ψj〉 = cos

(

θ

2

)

|+〉 ± sin

(

θ

2

)

|−〉 . (0 ≤ θ ≤ π

2
) (50)

The representation of these states on the Bloch sphere is depicted in Fig. 3.

φ
1φ

2

ψ1ψ2

µ
1

µ
2

+

−
FIG. 3. The case of two signal states. In this case the optimal solution is unique, and comprises a von Neumann measurement

and the retransmission of two nonorthogonal states. The retransmission states are again further north than the original signal
states. All the relevant states have the same longitude.
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The two states correspond to two points at the same latitude in the northern hemisphere with longitudes separated
by π. For these two states the operator (22) becomes

Ôk =
wk

2

(

(1 + cos θ)(1 + cos θ cos θk) sin2 θ sin θk cosφk

sin2 θ sin θk cosφk (1 − cos θ)(1 + cos θ cos θk)

)

, (51)

the eigenvalues of which are

ν±(θk, φk) =
wk

2

{

1 + cos θ cos θk ±
[

cos2 θ(1 + cos θ cos θk)2 + sin4 θ sin2 θk cos2 φk

]1/2
}

. (52)

The required greater of the two eigenvalues is clearly maximised by setting φk = 0 or π. Thus the strategy that
maximises the fidelity must comprise only POM elements corresponding to states at the same longitudes as the two
signal states.

The maximisation of the fidelity (25) follows the same lines as that for the case M > 2 and we will only present
the main results. The extremisation of the fidelity subject to the constraints (19) and (20) leads to the conclusion
that the only possible values for θk are 0, π and one other angle Θ. Repeating the extremisation with these possible
values for θk leads to the result that Θ = π/2 and that this is the value for which the fidelity can attain its maximum
value. It follows that the unique measurement strategy for maximising the fidelity with the two possible signal states
(50) has the two POM elements

π̂k =
1

2

(

1 (−1)k−1

(−1)k−1 1

)

. (53)

This corresponds to a von Neumann measurement, the two possible outcomes of which correspond to the two or-
thonormal states

|µk〉 =
1√
2

(

|+〉 + (−1)k−1 |−〉
)

. (54)

This is the strategy that also minimises the error probability if we associate the measurement outcome ‘k’ with the
signal state |ψk〉. The resulting maximum possible value for the fidelity is

Fmax =
1

2

[

1 +
(

cos2 θ + sin4 θ
)

1

2

]

. (55)

This takes its maximum value of unity for both θ = 0 and θ = π/2. This is reasonable as for θ = 0 all the signal states
correspond to |+〉 and unit fidelity can be achieved by simply retransmitting |+〉. For θ = π/2 the two signal states
(50) are orthogonal and a von Neumann measurement can determine the signal state with certainty. The required
retransmission state is then simply the signal state.

The required retransmission states that achieve this maximum fidelity are the eigenstates of the two operators

Ôk =
1

4

(

(1 + cos θ) (−1)k−1 sin2 θ
(−1)k−1 sin2 θ (1 − cos θ)

)

, (56)

having the common greater eigenvalue

ν+ =
1

4

[

1 +
(

cos2 θ + sin2 θ
)

1

2

]

. (57)

These retransmission states are

|φk〉 =
1√
2

(

cos2 θ + sin4 θ
)−

1

4

[

(

cos2 θ + sin4 θ
)

1

2 − cos θ
]−

1

2
{

sin2 θ |+〉 + (−1)k
[

(

cos2 θ + sin4 θ
)

1

2 − cos θ
]

|−〉
}

= cos
(χ2

2

)

|+〉 + (−1)k sin
(χ2

2

)

|−〉 (58)

and are depicted on the Bloch sphere in Fig. 3. They have the same longitude as the corresponding POM elements
but are again further north than the original signal states having a latitude π/2 − χ2 where

cosχ2 = cos θ
(

cos2 θ + sin4 θ
)−

1

2 . (59)

This angle also corresponds to a latitude that is south of the optimum for the cases in which M > 2.
If there are only two possible signal states then the maximum fidelity is achieved by means of the unique strat-

egy of performing the simple von Neumann measurement corresponding to the POM elements (53). The required
retransmission states associated with the relevant measurement outcomes have the form given in Eq. (58).
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V. CONCLUSION

In a quantum communications channel the signal comprises a known set of quantum states, each with a known
a priori probability for transmission. The possibility of selecting non-orthogonal states distinguishes the quantum
channel from its classical counterpart and leads to novel technical possibilities including quantum key distribution
[11]. It also creates the interesting problem for the receiver of having to select between a number of possible detection
strategies. The decision will be informed by the purpose for which the information retrieved is intended. The strategy
that minimises the error probability will have the greatest chance of retrieving the number ‘j’ associated with the
initial classical selection of the signal state. As such it is a measure of the quality of the measurement strategy for
retrieving this classical information. The fidelity, however, determines how well a state, selected on the basis of the
measurement outcome, will match the originally transmitted signal state. As such it depends on both the choice of
measurement strategy and the selection of the associated ‘retransmission’ states. The fidelity measures the quality
of the measurement strategy for retrieving |ψj〉 rather than ‘j’ and as such is a measure of the receiver’s ability to
recover the quantum information in the signal.

The fundamental difference between the error probability and the fidelity may be illustrated with a simple example.
Suppose that the M equiprobable signal qubit states are all of the form |+〉. In this case, there is no measurement
that can decrease the error probability below the value 1− 1/M obtained by guessing the state. Selecting |+〉 as the
only retransmission state, however, gives the greatest possible fidelity of unity.

In this paper we have derived the maximum possible fidelity for the symmetric qubit states defined in Eq. (11). This
maximum value depends on whether there are two or more than two possible signals states. For more than two signal
states there is a wide range of suitable measurement strategies that can achieve the maximum fidelity. This includes
the unique strategy that minimises the error probability. For two signal states the only strategy that can achieve the
maximum fidelity is that which minimises the error probability. In general, the required retransmission states depend
on the measurement outcome but coincide with neither the signal states nor the elements of the measurement POM.
It remains an open question as to whether, for all possible states, the strategy that minimises the error probability
will always maximise the fidelity. We will return to this question elsewhere.
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