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Abstract. The conventional postulate for the probabilistic interpretation of quantum
mechanics is asymmetric in preparation and measurement, making retrodic&liant on
inference by use of Bayes’ theorem. Here we present a more fundamenmétsym
postulate from which both predictive and retrodictive probabilities emerge inmtedgl

even where measurement devices more general than those usually consideeed a
involved. We show that the new postulate is perfectly consistent with the conventional

postulate.



1. Introduction

The conventional formalism of quantum mechanics based on the Copenhagen
interpretation is essentially predictive. We assign a state to a spsteed on our
knowledge of a preparation event and use this state to predict the probabilities of
outcomes of future measurements that might be made on the system. If we have
sufficient knowledge to assign a pure state, then this state contains thmunaxamount
of information that nature allows us for prediction. With less knowledge, we can only
assign a mixed state. This formalism works successfully. Sometimes, howesemay
have knowledge of the result of a measurement and wish to retrodict the statedprepa
A particular example of this is in quantum communication where the recipienteseae
quantum system that the sender has prepared and sent. If the prepared state has not
evolved at the time of measurement to an eigenstate of the operator remgstmnti
recipient’s measurement, then the best retrodiction that the recipient ce nsato
calculate probabilities that various states were prepared. While it isblpossi do this by
using the usual predictive formalism and inference based on Bayes’ theorenhiflis t
often quite complicated. Aharona¥ al. [2], in investigating the origin of the arrow of
time, formulated a retrodictive formalism that involves assigning a ststzl bon
knowledge of the measurement outcome. This state is assigned to the system jud prior
the measurement and evolves backward in time to the preparation event. While this
formalism seems to offer a more direct means of retrodiction, Belinfante s[3}ghad
that the formalism is only valid in very particular circumstances Heattiedy involve

the prepared states, which in his case are eigenstates of a preparatiooppliaving a



flat a priori probability distribution. While the lack of preparation knowledge associated
with such an unbiased distribution is sometimes applicable, in general it is not.

In our recent work [4 - 6] we have found quantum retrodiction useful for a variety
of applications in quantum optics. Furthermore the formalism can be generalisad te
be applicable when there is not a dlpriori probability distribution for the prepared
states by using Bayes’ theorem [6]. The price of this generalisatioarsappebe a loss
in symmetry between preparation and measurement. In this paper we adopt & forma
approach to investigate this question more closely. We find that we can replaagalthe us
measurement postulate of the probability interpretation of quantum mechanics by a
fundamental postulate that is symmetric in measurement and preparation. Thwss alls
to formulate a more general theory of preparation and measurement than that of the
conventional formalism and makes clear the relationship between the prediatide
retrodictive approaches. The new postulate also allows us to see clearhyaldels
argument in an appropriate perspective. = We show that our new postulate is entirely 1
accord with the conventional postulate.  The retrodictive formalism results santhe
calculated experimental outcomes of quantum mechanics as does the conventional
approach despite the fact that we ascribe a different state to the systemen

preparation and measurement.

2. Preparation and measurement devices
We consider a situation where Alice operates a device that prepares a quantum
system and Bob does subsequent measurements on the system and records the results.

The preparation device has a readout mechanism that indicates the state thm sigs



prepared in. We associate a preparation readout evemwherei =1,2,---, of the
preparation device with an operatok, acting on the state space of the system, which we

call a preparation device operator (PDO). Thisratpe not only represents the prepared
state but also contains information about any bmasts preparation. A bias might arise,
for example, because the device may not be abjroiduce certain states or Alice may
choose rarely to prepare other states. We desctitee operation of the preparation device
mathematically by a set of PDOs. The measurementiade also has a readout mechanism
that shows the result of the measurement. We aaseca measurement readout event,

where j =1,2,---, of the measurement device with a measurement adeperator (MDO)

A

I} acting on the state space of the system. Thistoperepresents the state of the system

associated with the measurement and contains infation about any bias on the part of
Bob or the device in having the measurement recbrddor example for a von Neumann
measurement the MDO would be proportional to a puwaee projector. We describe the

operation of the measurement device mathematicaby a set of MDOs. In general the
operators Ai need not be orthogonal to each other, and ndnedoperatorsf}.

In order to eliminate the complication of time wwed we assume for now that
the system does not change between preparation mmhsurement. For example, there
may not be a sufficiently long time between pré¢pamaand measurement for evolution
to occur. In an experiment Alice chooses a staprepare and, when the readout
mechanism indicates that this state has been susfiedy prepared, the preparation
readout eventi is automatically sent to a computer for recordidgb then measures the
system. If he chooses, he may then send the meeasnt readout evenf obtained to the

computer for recording. If the computer receivaecord from both Alice and Bob it



registers combined event(i,j). The measurement device may not produce a readout
event corresponding to every possible preparatiomest and different preparation events
may lead to the same measurement readout eventerells not necessarily a uniform
probability that Bob will record all readout event¥he preparation device may be
capable of preparing only a limited number of statd'here is not necessarily a uniform
probability that Alice will choose to prepare hadbet states. The experiment is repeated
many times with Alice choosing states to prepareshes wishes and Bob recording the
measurement readout events he chooses. The compugmoduces a list of combined
events ¢, j) from to each experiment, from which various geage frequencies can be
found.

We may wish tpredict the measurement result that will be recorded in a
particular experiment on the basis of our knowleddethe actual preparation eveamnd
our knowledge of the operation of the measuringiadgvthat is, of the set of MDOs.
Because of the nature of quantum mechanics, we liiguaannot do this with certainty,
the best we can do is to calculate the probabilihi#t various possible states will be
detected and recorded by Bob. Similarly the bestcam do inetrodicting the
preparation event recorded by Alice in a particidaperiment on the basis of our
knowledge of the recorded measurement evgnand our knowledge of the set of PDOs
for the preparation device, is to calculate prohgsies for possible preparation events.
Our aim in this paper is to postulate a fundamertationship that allows us to calculate
such predictive and retrodictive probabilities, whicould then be compared with the

occurrence frequencies obtained from the collectiaf combined event§i, j) recorded



by the computer. In this way a theory of quaetuadiction is verifiable
experimentally.

Difficulties have arisen in studying retrodictiad] [because the usual formulation
of quantum mechanics is predictive. That is, nreamant theory is formulated in terms
of predicting measurement outcomes. In order tepkpreparation and measurement as
well as prediction and retrodiction on a symmefforting, it is convenient to reformulate
the probability interpretation of quantum mechanity means of postulate (1) below.
We show that this leads to the conventional asymmmgtredictive postulate and, as an
assurance that our approach is perfectly equivaldnt predictive theory, in the Appendix

we derive postulate (1) from conventional measuremeheory.

3. Fundamental postulate

A sample space of mutually exclusive outcomes cancbnstructed from the
collection of recorded combined events by identmfyithese events with points of the
space so that identical events are identified whth same point. A probability measure
assigns probabilities between zero and one to thmtp such that these probabilities sum
to unity for the whole space. The probability nsdgto a poinfi, j) is proportional to
the number of combined evertsj) identified with that point, that is, to the cmear
frequency of the evenfi,j). Our fundamentglostulate in this paper for the probabilistic
interpretation of quantum mechanics is that thebpholity associated with a particular

point (7, j) in this sample space is

Tr(A L,
PV (i) = iz M
Tr(AL')



where the trace is over the state space of thensysnd

>

A= 2)
r

A
DI YR 3)

In order to ensure that no probabilities are negatwe assume thaz&i andf‘j are non-

negative definite. If a combined event from amrempnt chosen at random is recorded

then expression (1) is the probability for thamewe bei(j). That is, expression (1) is

the probability that the state prepared by Aliceesponds toAi and the state detected

by Bob corresponds ) ;» given that Bob has recorded the associated measent

event. The essence of the postulate lies in theerator of (1); the denominator simply

ensures that the total probability for all the rdetb mutually exclusive outcomes is

unity. We note that the fundamental expression ofily requires& andf‘j to be
specified up to an arbitrary constant. That is,came multiply all tHZ“aj by the same
constant without affectingP™ (i, j) and similarly foﬁi. We use this flexibility later to
choose fj for convenience such that-T" is non-negative definite, wheie is the unit

operator. We shall also use this flexibility aoschg Ai.

From (1) we can deduce the following probabilities:



Tr(A,I)

P <i>=; P = A )
AL Tr(/A\f‘.)
- —
() TrAD) S)
AT, .~ PAr(i’j)_ Tr(‘;\if‘j)
P (jl= PAr(i) = Tr(;\il’—\) (6)
A Tr(AT) ;
(i J)_—LTr(f\fi) (7)

Expression (4) is the probability that, if an axpemt chosen at random has a recorded
combined event, this event includes preparation eve Likewise (5) is the probability
that the recorded combined event includes the meament eventj. Expression (6) is the
probability that, if the recorded combined eventludes eventi, it also includes evgnt

That is, it is the probability that the event dedoby Bob is the detection of the state
corresponding tol’; if the state prepared by Alice in the experineen¢sponds to/&r

Expression (6) can be obtained by limiting theplearmspace to those events containing

and is essentially Bayes’ formula [7]. Likewisei§7the probability that the state
prepared by Alice corresponds t&i if the event recorded by Bob is the detectidme of t
state corresponding td;.

Expression (6) can be used for prediction. Inratelecalculate the required

probability from our knowledge of the P]fQ associated with the preparation evant



we must also know every possible MIﬁQ that is, we must know the mathematical
description of the operation of the measuring deviSimilarly we can use (7) for

retrodiction if we know' ; and all thé\i of the preparation device.

3. Unbiased devices
3.1. A priori probability

Of all the states that Alice might prepare, themna priori probability, which is
independent of the subsequent measurement, that sbkooses a particular one. For
PM () in (4) to represent thaspriori probability the expression f&" (i) must be
independent of the operation of measurement devicéA specific condition must be
imposed on the measuring device and its operatmmda this. This condition is that the

set of MDOs describing the operation of the measant device must be such that their

sum I" is proportional to the identity operator on tite space of the system, that is

f =71 ®)

say wherey is a positive number. Then we can replane the numerator and

denominator in (4) by the unit operator and tHaemde of [ is removed from the

expression, making P"' (i) equal toP"(i) where the latter is defined as

TrA, )

P(i)=—
@) TrA

10



Expression (9) is th&';-independent, a priori probability that the state prepared by Alice

corresponds toA,.

It is useful also to define an operator

P =—rt : (10)

The trace ofp, is unity so these non-negative operators darsity operators describing
the states Alice may prepare. From the definiti®hsand (10) we can wnftge as

proportional to PA(i)ﬁi. The constant of proportionality always cancelthe

expressions for the various probabilities so thereno loss of generality in taking this

constant to be unity. Then we have
A, =P (i)p, : (an

We see explicitly from (11) how the PﬁlQ as well as representing the prepared state,
also contains information about the bias in itpgmation. The biasing factor is simply
the a prioripreparation probability.

From (9), (11) and (2) we see that has unit trace so it also is a density operator

given by
A=p=2 P'Dp . (12)
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This is the best description we can give of the ptapared by Alice if we do not know
which particular preparation or measurement evenbk place but we do know the

possible states she can prepare and therioriprobabilities associated with each.

3.2. Unbiased measurements

We call the operation of a measurement device fuchw(8) is true, and thus
PAr(i) = P"(i), unbiased. Not all measurements are unbiased, as we shudlisd later,
but for now we shall focus on measuring deviceh wnbiased operations. For these it is

convenient to define

A .

r
H,:—; : (13)

From (6), (8) and (10) we then obtain
PN(jli)=Tr(pII,) (14)

From (13) and (8) the sum Iﬁ)ﬁ is the unit operator, so these non-negative

operators form the elements ofpmobability operator measure(POM) [8].  Our result
(14) is thgundamental postulate of quantum detection theof8]. Thus our postulate (1)

reduces to the conventional postulate for unbiasadasurements. Expressions (14) and

12



(10) allow us to identify the P]jQ for the preparation of a pure state as being

proportional to the corresponding pure state praogec

It is worth remarking on the asymmetry of (14hainthe PDO has become a
density operator and the MDO has become a POM alemdn the simple case where
both the PDO and the MDO are pure state projectsror a von Neumann measurement
of a pure state, symmetry is restored. In genbmakever, density operators and POM
elements have quite different normalisation propest The asymmetry in preparation
and measurement, and hence a time asymmetry, does arise here through some basic
asymmetry in quantum mechanics. Rather it arisesnfour request that the probability
for Alice’s choice of preparation event be indemerdof subsequent measurement. This
is usually an implicit assumption in the convemlprthat is predictive, probability
interpretation of quantum mechanics. The apparesymmetry is reinforced by adopting
(14) as a fundamental postulate of measurement theas done for example by Helstrom
[8].

A simple, but important, example of unbiased meamant is the case where no
measurement is made. For example the measuringicdewnight not interact with the

system at all and thus gives a meter reading of foerall prepared states. As there is
only one measurement readout event, there is onlg MDij =T. The only

probability that we can assign to a preparatiommevé we do not know the preparation
readout event and if we have made no measurementhensystem is the priori
probability P*(i). Thus if we calculate the retrodictive probabi#it' (ilj) on the basis
of the no-measurement state, then we must obtBini). From (7) and (Ef), must

therefore be proportional to the unit operator smdthe measurement must be unbiased.

13



The single POM element for the measuring device tnbed to ensure that the sum of the
elements is the unit operator.

The operation of most ideal measuring devices isalliy unbiased, but this is not
always the case. In [6] we discussed two-phottarfénence for photons from a
parametric down-converter where results from highemmber states are discarded.

Another example is in the operational phase meamwmnts of Noler al. [9]. Here certain
photo-detector readings are not recorded becauseythdo not lead to meaningful values
of the operators being measured. The probabilitised for the experimental statistics are

then suitably renormalised.

3.3. Unbiased preparation
We say in general that the operation of a preparadevice is unbiased if the

PDOs /ii are proportional téi where

>z =1 (15)

that is, if the operaton:s'i form the elements of a preparation device POMen, Tbr a

preparation device with an unbiased operatioR," (j) is independent of\i and

P (il j)=Tr(E,p"™) (16)

where

14



P =T, /T, (17)

A specific example of a preparation device withuniased operation is where
Alice prepares a spin-half particle in the up ewndstate, each with a probability of one-

half. The two preparation device operatqgr,% and A can then be taken as

down

proportional to density operators given by the eesive projectors|upXup| and

|downXdown|. ThenA is proportional to the unit operator on the spatee of the

particle and we find from (7) that

PY (up! j) =Tr(lupXup|p"™) (18)

which gives the retrodictive probability that thetesin which Alice prepared the particle

was the up state if Bob detected the siite= lA“j / Trfj. This is consistent with (16)

with éup = |upXup|.

Many preparation devices have biased operations, €b6) is not applicable to
them. For example the preparation of a fieldphwtean number state may be
constrained through limited available energy. His tcase the set of PDOs would not
include projectors for higher photon number statasl thus could not sum to be
proportional to the unit operator in the wholee sspace of the field. Alternatively, Alice

might prepare the spin-half particle in the upestatin an equal superposition of the up

15



and down states only. For such situation we musttlis more general form of the

retrodictive probability (7).

4. Time evolution

In the conventional approach, when the state ofemyschanges unitarily between
preparation and measurement, we replagd by p(t )=UpU' in the appropriate
probability formulae wherel is the time evolution operator between the prepemt
time 7, and the measurement tintg,. Thus in this paper we repl&;eby
/ii(tm)z l}/A\il}T while noting that TEA(/A\il}T):Tr/A\i. This is clearly consistent with (10)
and yields the usual predictive formula (14) wathreplaced byp.(z,). For the

retrodictive probability replacing (7) we obtaiming the definition (17),

Tr(UAU pT™)

PY(ilj)=—=== 19
G =100 o) (19)
From the cyclic property of the trace we can wewhis as
Tr[A, P (¢
PAr(i /)= [_'p.M (20)

Tr{ApF" (z,)]

A retr

where o (7,) = U Tﬁ;e”l} is the retrodictive density operator evolved backdsa in time

to the preparation timeThis is the retrodictive formula we obtained prasip [6] using

the conventional approach and Bayes’ theorem [We note that (20) can be interpreted

16



as the state collapse taking place at the prepamatime?,. This arbitrariness in when we
choose to say the collapse occurs is not confinedetrodiction. Even the conventional
predictive formula obtained from (14) by replacipgs ) by p(z,)=Up.U" can be
rewritten as Tr(AU Tijl} ) where Z}Iﬁll} can be interpreted as an element of a POM

describing the operation of a different measurimgide for which the measurement event

takes place immediately after the preparation time

5. Example

As an important example of our approach, we appin this section to the
experimental situation envisaged by Belinfante [3]After studying the work of Aharonov
et al[2], Belinfante came to the conclusion that retrodiction only valid in very special
circumstances. He examined the situation where easorement device B makes von

Neumann measurements with outcomes corresponding to complete set of pure states

|b/> His preparation device, which prepares puree$tlmi>, comprises a measuring

device A making von Neumann measurements on a mysim a state given by a density

operator ,bg. The predictive probability that the state mcxﬂsdslb]) if the state

2
prepared islai> isKailbj>l . Belinfante argued that quantum theory wouldirhe-t
symmetric in its probability rules if the retradactprobability that the state prepared is

2
|ai>, if the state measured |1§>, is taken aijlal.>| , which is the retrodictive inverse of

2
Kailbj>| . These two expressions are equal. Belinfanteledad that retrodiction is

17



valid only if the mixed state of the system bafeasurement by A is uniformly

“garbled”, that is if the density operaﬁbgﬁs proportional to the unit operator.

Let us examine this situation in terms of our fiosma The operation of the von
Neumann measuring device B is unbiased so we cauribe it by a set of PDOs which

form a POM with elements
I, =11 =[b,Xp,|- @1

Similarly the operation of the measuring devices Alescribed by the POM with elements
e =|a,Xa,|. The priori probability for statep, =|ai><ai| to be prepared iEr(,ﬁgfIf).

Thus from (11) we have

Ai =Tr cag |aixai ” 4 Xai | (22)

From (14), the predictive probability for an unddasneasuring device, we find that the
oqe . . . 2 .
probability that the state measured |1§> if the state prepared |I§> 1sKa,.|bj>| . This

agrees with Belinfante’s result. However, the adictive probability (7) becomes, from

(21) and (22)

1e(p)aXalfalo )
S| 1eeaXalfals Y|

PY(ilj) = (23)

18



for the probability that the state preparec'ajié if the state measured |i§> This agrees

with the result of Belinfante if, and onlybgifs proportional to the unit operator.

From the above, we see that the difficulty witlodietion raised by Belinfante is
due to use of the retrodictive inverse of an inppgte predictive formula. Belinfante
effectively found PAr(i | j) by taking the retrodictive inverse R’)’fr( jli) in (14).
However (14) i1s valid only for unbiased measuriagiads and its retrodictive inverse,
which is given by (16), is only valid for unbpsghration devices. It is not surprising

then that Belinfante found his retrodictive formwaly worked iﬁg is proportional to

the unit operator as this is precisely the comlitieeded to ensure that the PDOs (22)
describe the operation of an unbiased preparati@vide. For biased preparation we must
use the retrodictive inverse of thwre general predictive formula (6) which is just (7) as
used above. We conclude that retrodiction is vhbida general preparation device

provided the correct formula is used.

6. Conclusion
Overall, the approach adopted in this paper topthbability interpretation of

quantum mechanics puts preparation and measurement a more equal footing than in
the conventional approach where preparation is udyaignored and the measuring device
is assumed to be unbiased. We have formulated pproach in terms of more general
sets of non-negative definite operators than POMWe have found that for an unbiased
measuring device, for which the measuring deviceraprs reduce to the elements of a
POM, the preparation device operators can be wmiths density operators, absorbing the

normalisation denominator in the general expressidf). This reduces (6) to (14), the
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conventional asymmetric postulate of quantum detgmi theory. Just as (14) is only
applicable for unbiased measuring devices, its odictive inverse (16) is only applicable
for unbiased preparation devices. These latteridey are unusual in practice, which
leads to Belinfante’s objection to retrodiction. ugeful theory of retrodiction requires
that allowance be made for bias in the preparadeonce. A fully symmetric probability
interpretation of quantum mechanics would then alsguire allowance to be made for a
biased measurement device as we have done in thperp

As mentioned in the introduction, the retrodictfeemalism results in the same
calculated experimental outcomes of quantum mechasias does the conventional
approach based on the Copenhagen interpretation,spi¢e the fact that we ascribe a
different state to the system between preparatioml aneasurement. In the conventional
approach, the state assigned to the system contailns information needed to predict the
outcomes of possible measurements on the system. this sense, the conventional
approach is essentially predictive in nature andthss a legitimate part of the broader
picture that also includes retrodiction. Indeed donventional approach is sufficient in
the sense that one can perform retrodictive proh#picalculations by using it together
with Bayes’ theorem. On the other hand, this appres not necessary in that one could
perform predictive probability calculations, albetomplicated, using the retrodictive
formalism plus Bayes’ theorem. Thus both the conwaal and retrodictive formalisms
should be viewed merely as means for calculatingbghilities with one being more
convenient than the other depending on the situntioWe should also mention, however,
that retrodiction also raises interesting philosaphl questions if one wishes to ascribe a

physical existence or reality to the state in thelagical sense. These issues go beyond
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trying to decide if the state of the system i$ly'tethe predictive or the retrodictive

state. In [5] it i1s shown that it is possibike foztrodictive state to be entangled for
some situations where there is no entanglementhm predictive picture. In the predictive
formalism, the Many-Worlds interpretation [10] depi an increasing number of

branching universes that include the different pbds results of measurements as we go
forward in time. In the retrodictive formalismaayMVorlds interpretation should look
very different. Presumably the branching will ocam we go backwards in time from the
measurement to the preparation. We do not intengutsue such questions here. As
long as the retrodictive formalism yields the aefrrguantum mechanical probabilities,

we view it as an acceptable and sometimes more exnant approach to quantum

mechanics and shall leave the philosophical isstesmetaphysics.
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Appendix
In this appendix we derive our general postulade ftdm the standard predictive

postulate (14). As we have already shown how follhws from (1), this establishes
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that (1) is both necessary and sufficient for ¢hepted probability interpretation of
quantum mechanics.

The operation of the measuring devibEused by Bob is described by the set of

MDOs f‘j withj =1,2,---. As discussed earlier, we choose for conveni¢heearbitrary

A

constant inf‘j such thal —T" is non-negative definite. This allows us to elefiset of

non-negative definite operatordI, by

I,=0  forj=12, (A 1)

n,=1-T. (A 2)

It is clear from (3) that the operaﬂfh;s sum to the unit operator and thus form the

elements of a POM. We can use this POM to defimperation of another measuring
device M which has precisely the same operation as thdf,ofxcept that it allows an
extra measurement evenk =0 to be recorded. The readout for this event can be
interpreted as “none of the everits We can use the usual postulate corresponding t
(14) to obtain the probability that measurementngve will be recorded byf if the

system is prepared in stag, as

Pk 1i) =Tr(pI1,) . (A 3)

Thus
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P, k)= Tr(D,I1,) P (i) (A 4)

If Bob had used/ in place o¥f, a sample space of combined evertsR would
have been obtained that is larger than that oftevgnj obtained withM in that it
includes some extra pointg, 0). If these extra events are ignored, then fheredice
between the operations off andM vanishes, so the restricted sample space of events
(i,k) withk #0 will be the same as the sample space of eventst@rM. The
probability P (i, j) will thus be equal to the probability of findiagetlent { B, withk
not zero, in this restricted sample space. Thibapility will be equal B8""(i, /) with a
normalisation factor to ensure that the total phohay for the restricted sample space is

unity. From (A4), (Al) and from the definitionw@)then have

PGy Tr(pL) P (i)
TGP

Tr(p,I )P (i) AS)

Tr(0)

where p is defined by (12). If we now intro&lpdcy defining it as being proportional

to PA(i),ﬁi, which is consistent with (10), and deﬁfneby (2), we find that (A 5) reduces

to
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.. . Tr(ATL)
S £
P @) Tr(AD) (A 6)

in agreement with (1).
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