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Abstract: In modern design of composite structures, multiple materials with different properties are 

bounded together. Accurate prediction of the strength of the interface between different materials, 

especially with the existence of cracks under thermal loading, is demanded in engineering. To this end, 

detailed knowledge on the distribution of temperature and heat flux is required. This study conducts a 

systematical investigation on the cracks terminated at material interface under steady-state thermal 

conduction. A new symplectic analytical singular element is constructed for the numerical modeling. 

Combining the proposed element with conventional finite elements the generalized flux intensity factors 

can be solved accurately.  

Keywords: symplectic dual approach, generalized flux intensity factor(GFIF), steady-state thermal 
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Nomenclature 

 

,A B  coefficients of the general solution of symplectic eigenvector  

F  vector of coefficients of the general solution of symplectic eigenvector  

H  Hamiltonian operator matrix 

k  thermal conductivity 

iM ( 1,2,3)i =  material 

rq , qθ  heat flux densities 

R  chain matrix relates the eigenvectors of two adjacent materials 

rS , Sθ  symplectic dual variables 

T  temperature 

Z  unknown vector in symplectic solving system 
α  vertex angle of material 

( , )r θ  polar coordinate system 
2∇  Laplacian operator 

µ  symplectic eigenvalue 

( )θψ  symplectic eigenvector 

,T rψ ψ  elements in symplectic eigenvector 

γ  coefficients of symplectic eigen expanding terms 

Θ  expression of characteristic equation of symplectic eigenvalue 
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1.  Introduction 

Composite materials fabricated by combining two or more different materials are widely applied in 

engineering for their advantages which are not attainable by any single engineering material. However, 

extensive amount of interfaces between two different materials exist in such composite materials which 

will possibly lead to delamination under thermal loading. For some cases, delamination migrates to the 

adjacent interface in terms of a inclined crack terminated at the material interface[1]. According to the 

previous study, it is known that not only stresses but also heat flux density possess singularity in the 

vicinity of a crack tip[2]. 

Many contributions have been reported in existing literatures. Kou studied bimaterial interface 

crack between two semi-infinite dissimilar media subject to uniform heat flow, and obtained the 

temperature distribution[3]. Chao and Chang investigated interface crack between dissimilar anisotropic 

media based on the Hilbert problem formulation and a special technique of analytical continuation, and 

obtained the analytical solution for steady-state heat conduction problem[4]. Chao et al. studied heat 

conduction of curvilinear cracks in bounded dissimilar materials with heat source[5]. Marin proposed an 

invariant method of fundamental solutions to investigated 2D steady-state anisotropic heat conduction 

problems[6]. Hasebe and Kato reported a closed-form solution for the bonded bimaterial planes at two 

interfaces subject to different temperatures[7].  

For more general problems numerical methods such as finite element method (FEM) and boundary 

element method (BEM) should be employed to get numerical predictions. Ling and Yang proposed a 

virtual boundary meshless with Trefftz method to investigate the two dimensional (2D) steady-state heat 

conduction problem for cracks and the heat stress intensity factor can be simply calculated[8]. Zhou et al., 

proposed a new numerical method for study of steady-state thermal conduction problem of bimaterial 

interface cracks[9]. Yosibash and his collaborators investigated systematically on the steady-state thermal 

conduction problems with singularities, numerical solutions of the generalized flux intensity 

factors(GFIF) were obtained based on post process operations in conjunction with FEM[10, 11, 12, 13]. 

Yvonnet et al. investigated the Kapitza thermal resistance between two three dimensional (3D) 

dissimilar materials by using extended finite element method (XFEM) in which the temperature jump 

across the interface can be captured accurately with the aid of analytical solution[14]. 

The symplectic dual approach for elasticity[15] was widely applied for studying crack problems 

analytically and the analytical symplectic eigen solutions for bimaterial crack[16], crack in pizeo-electric 
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material[17, 18], and multi-material cracks under mechanical loading[19] were obtained. Based on the 

symplectic eigen solutions, a series of analytical singular elements were constructed for the numerical 

study of cracks[20], fatigue crack growth[21], cracks in Reissner plate[22] and Dugdale cohesive model 

based cracks[23]. Leung et al. employed the symplectic dual approach to the study of steady-state thermal 

conduction problem analytically and numerically[24, 25]. And for the case of inclined crack terminated at 

the material interface, the states of stresses and temperatures are even more complex. As a result, it 

brings significant challenge on both analytical study and numerical modeling of the progressive damage 

in composite materials under thermal loading. 

In the light of existing numerical methods for steady-state thermal conduction with singularities, 

the combination of near crack tip asymptotic solution and conventional numerical methods such as FEM 

brings many advantages. The rich information of thermal variables expressed in terms of eigen solution 

should be applied to benefit the solving accuracy and efficiency. Motivated by this, the present study 

first attempts to find the analytical symplectic eigen solution of steady-state thermal conduction in 

inclined crack terminated at bimaterial interface. A symplectic analytical singular element (SASE) is 

also developed for numerical simulation. 

2.  Fundamental equations 

Considering an inclined bimaterial crack terminated at the material interface as shown in Fig.1, 

each material is represented by iM ( 1,2,3)i =  where 1 3M M=  represents the same material while 2M  

represents the other material. The subscript "3"  is introduced to distinguish the different parts of material 

1 separated by the crack. So the vertex angles satisfy 1 3α α π+ = , and 2α π= . Each part of the material can 

be described under the sub polar coordinate system i iOCθ  as shown in Fig.1. 

In terms of steady-state thermal conduction problem, the relationship between temperature and heat 

flux densities in material iM  can be specified by: 

 ,
i

r i i
Tq k
r

∂
= −

∂
,    ,

i i
i

i

k Tq
rθ θ
∂

= −
∂

( 1,2,3)i =  (1) 

where iT  is temperature and , ,[ , ]r i iq qθ  is the vector of heat flux densities along each direction, and ik  is 

thermal conductivity. The steady-state heat conduction equation in the absence of the internal heat 

source can be expressed in terms of temperature using the Laplacian operator 2∇  as: 

 2 0iT∇ = ( 1,2,3)i =  (2) 
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whereas the Laplacian operator in the polar coordinate system is 2 2 2 2(1/ ) (1/ )r rr r θ∇ = ∂ + ∂ + ∂ . The 

interface between the two materials is assumed to be perfect bounded and the compatibility conditions at 

the interface are specified by 

 
11 0| |

i i ii iT Tθ α θ += + == ( 1,2)i =  (3) 

 
1, , 1 0| |

i i ii iq qθ θ α θ θ += + == ( 1,2)i =  (4) 

The fundamental equations can also be derived from the following equation of dissipation of quantity of 

heat specified by: 

 
0 0

3
, 2 2

, , ,
1

δ
1 ( ) d d 0
2

i ii i
r i r i i i

i i i

qT Tq q q r r
r r k

α θ
θ θ

θ

∞

=

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪
+ + + =⎨ ⎬⎜ ⎟

∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫∑  (5) 

Typical boundary conditions at the crack surfaces are combinations of specific temperature and/or 

heat flux density, and the standard homogeneous boundary conditions can be summarized as 

(i) prescribed temperature: 
1 3 31 0 3| 0,        | 0T Tθ θ α= == =  (6) 

(ii) prescribed temperature and heat flux: 
1 3 3

1 3 30
0,      / 0T T

θ θ α
θ

= =
= ∂ ∂ =  (7) 

(iii) prescribed heat flux: 
1 3 3

1 1 3 30
/ 0,       / 0T T

θ θ α
θ θ

= =
∂ ∂ = ∂ ∂ =  (8) 

The subscripts " 1", " 2 " and " 3 " will be omitted hereinafter except where it may cause confusion. 

3.  Symplectic eigen expansion 

By introducing ln rξ = , r rS rq= , S rqθ θ= , the variational principle Eq.(5) is transformed into an 

equivalent form as: 

 
0 0

3
2 2

, , , ,
1

δ
1 ( ) d d 0
2

i i i
r i i r i i i

i i i

T TS S S S
k

α

θ θ ξ θ
ξ θ

∞

=

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪
+ + + =⎨ ⎬⎜ ⎟∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫∑  (9) 

Making the variation with respect to Sθ  gives 

 
TS kθ θ
∂

= −
∂

 (10) 

Substituting Sθ  into the variational principle to eliminate Sθ  gives 

 
0 0

23
, 2

,
1

δ ( ) d d 0
2 2

i r ii i i
r i i

i i i

ST k TS
k

α
ξ θ

ξ θ

∞

=

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪
+ − =⎨ ⎬⎜ ⎟

∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
∫ ∫∑  (11) 
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Then make the variations of Eq.(11) with respect to T , rS respectively, the symplectic dual equation can 

be specified by 

 2 2

0 1/
/ 0r r

T Tk
S Sk θξ

−⎡ ⎤ ⎡ ⎤⎡ ⎤∂
=⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂∂ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (12) 

In the symplectic dual method, T  is also recognized as the configuration variable while rS  the dual 

variable. Introduce T[ , ]rT SZ =  and the above symplectic dual equation can be rewritten as 

 =Z HZ&  (13) 

where the dot ‘ ⋅ ’ represents the partial differentiation with respect to ξ . Taking advantage of the 

method of variable separation and assume that the solution is in the form of ( )eµξ θ=Z ψ  the original 

problem can be transformed into the symplectic eigenvalue problem 

 ( ) ( )θ µ θ=Hψ ψ  (14) 

where µ  and T( ) [ , ]T rθ ψ ψ=ψ  are the symplectic eigenvalue and the corresponding eigenvector.  

Depending on different crack surface boundary conditions, zero eigenvalue and the corresponding 

eigenvector may or may not exist for the current study, and they should be treated separately. For 

nonzero eigenvalues, the above symplectic characteristic equation can be solved and the general solution 

of eigenvectors can be specified by 

 T sin( )  cos( )
( ) [ , ]

sin( )  cos( )T r

A
k k B

µθ µθ
θ ψ ψ

µ µθ µ µθ
⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
ψ  (15) 

where T[ , ]A B=F  is the vector of undetermined coefficients. Substituting the above eigenvector into 

the compatibility conditions Eq.(2) and Eq.(3) at the interface gives 

 1 1
1

/ cos( ) / sin( )
sin( ) cos( )

i i i i i i i
i i i

i i i

k k k k A
B

µα µα

µα µα
+ +

+

−⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
F RF , 1,2i =  (16) 

It is easy to found that the coefficient vectors 2F  and 3F can be expressed by using 1F  explicitly and the 

general solution of eigenvectors 2ψ  and 3ψ can be expressed as 

 2 1 1
2 2

sin( ) cos( )
sin( ) cos( )k k
µθ µθ

µ µθ µ µθ
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
ψ RF  (17) 

 3 2 1 1
3 3

sin( ) cos( )
sin( ) cos( )k k
µθ µθ

µ µθ µ µθ
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
ψ R RF  (18) 
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The solution of the original problem can be given in the form of symplectic eigen expansion 

 
( )( ) ( )

1
( )

jj j

j
eξµγ θ

∞

=

=∑Z ψ  (19) 

where the superscript " ( )j " is introduced to represent the -thj order eigen expanding pair, and ( )jγ  is the 

corresponding eigen expanding coefficients. The eigen expanding terms in Eq.(19) are arranged in an 

ascending order according to Re( )µ . Noted that the eigen solutions with Re( ) 0µ <  are neglected in 

Eq.(19) to ensure the boundedness condition of temperature at crack tip. Besides, the Jordan form eigen 

solution corresponding to zero eigenvalue (if exist) is not considered in Eq.(19). Following the definition 

of the generalized flux intensity factor (GFIF) by Ref.[12], the expanding coefficients ( )jγ ( 1,2,...j = ∞ ) 

are also recognized as the GFIFs. According to Eq.(19), the analytical solution can be obtained after 

solving all the unknown GFIFs. 

The unknown eigenvalues and the vector 1F  can be determined by the boundary conditions at the 

two crack surfaces. Actually, the coefficients vector 1F  depends only on the boundary conditions on 

1 0θ = . Substituting the eigenvector of the first material into the boundary condition on 1 0θ =  gives the 

nontrivial solution of 1F  

(a) 
1

T
1 1 0[1,0] ,   for   | 0T θ == =F  (20) 

(b) ( )
1

T
1 1 0[0,1] ,   for   / | 0T θθ == ∂ ∂ =F  (21) 

The eigenvalue should be decided by the boundary condition on 3 3θ α= , substituting the 

eigenvector into the boundary condition on 3 3θ α=  gives 

 ( ) 0µΘ =  (22) 

and the symplectic eigenvalues can be solved from the above equation. 

4.  Symplectic eigen solution 

The eigenvector corresponding to zero eigenvalue can be obtained by solving ( ) 0θ =Hψ , it is 

found that zero eigenvalue doesn’t exist if at least one crack surface is constrained by prescribed 

temperature. For nonzero symplectic eigenvalues 0µ ≠ , substituting the expressions of the eigenvector 

into the boundary conditions at crack surfaces and expand Eq.(22) will give the characteristic equation. 

And the nonzero symplectic eigenvalues can be obtained by solving the characteristic equation.  
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The characteristic equations for the three boundary condition cases are listed as follows: 

(i) for prescribed temperature Eq.(6), zero eigenvalue does not exist, and the characteristic equation for 

nonzero eigenvalue is specified by 

 ( )1 2 1 2 1 1 2 1( )sin(2 ) ( )sin(2 )+( )s =in 2 ( 0)k k k k k kπµ α µ µ π α+ + − − −  (23) 

The eigenvectors for this type of boundary condition are given by 

 1
1

1
sin( )

k
µθ

µ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
ψ  (24) 

 2 1 1 2 1
2

1
(cos( )sin( ) / cos( )sin( ))k k

k
µθ µα µα µθ

µ
⎡ ⎤

= +⎢ ⎥−⎣ ⎦
ψ  (25) 

 
( )

( )

3 1 1 2 1
1

1 2 1 1

1
cos( ) cos( )sin( ) / sin( )cos( )

                                                     sin( ) cos( )cos( ) / sin( )sin( )

k k
k

k k

µθ µπ µα µπ µα
µ

µθ µπ µα µπ µα

⎡ ⎤
= + +⎡⎢ ⎥ ⎣−⎣ ⎦

− ⎤⎦

ψ
 (26) 

(ii) for prescribed temperature and heat flux Eq.(7), zero eigenvalue does not exist, and the characteristic 

equation for nonzero eigenvalue is specified by 

( )2 2 2 2 2 2
1 2 1 1 2 2 1 1 1 2( )cos 2 ( ) ( ) cos(2 ) ( )cos(2 ) 0( =)k k k k k k k kµ π α πµ α µ− − + + + − − −  (27) 

The eigenvectors for this type of boundary condition are given by 

 1
1

1
cos( )

k
µθ

µ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
ψ  (28) 

 2 1
2

1
cos( )cos( )

k
µα µθ

µ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
ψ  (29) 

 
( )

( )

3 1 1 2 1
1

1 2 1 1

1
cos( ) cos( )cos( ) / sin( )sin( )

                                                     sin( ) cos( )sin( ) / sin( )cos( )

k k
k

k k

µθ µπ µα µπ µα
µ

µθ µπ µα µπ µα

⎡ ⎤
= − −⎡⎢ ⎥ ⎣−⎣ ⎦

+ ⎤⎦

ψ
 (30) 

 (iii) for prescribed heat flux Eq.(8), zero eigenvalue exists and the corresponding eigenvector is 
(1) T[1 0]=ψ  which represents steady temperature field with zero heat fluxes and temperature 

uniformly distributed everywhere. In addition, the first grade Jordan form eigenvector (1)
1Jψ  should 

satisfy (1) (1)
1J =Hψ ψ , and can be solved and specified by (1) T

1 [0 ]J k= −ψ . The first grade Jordan form 

eigenvector forms the corresponding Jordan form eigen solution as 

 (1) (1) (1) T
1 [ ]J J kξ ξ+ = −ψ = ψ ψ  (31) 
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which is a temperature filed with a center heat generation. It can be proven that the second grade of 

Jordan form does not exist and the Jordan chain breaks here. For nonzero eigenvalue, the characteristic 

equation is specified by 

 ( )1 2 1 1 2 1 2 1( )sin(2 ) ( )sin(2 ) ( )sin 2 ( ) 0k k k k k kα µ πµ µ α π− − + − − − =  (32) 

The expressions of the corresponding eigenvectors for this type of boundary condition are in the same 

form with the case (i) given above in Eq.(24)-(26), but it should be noted that the nonzero eigenvalues 

for these two cases are different, so the explicit forms of the corresponding eigenvectors are different 

after substituting the eigenvalues into the formulas given in case (i). 

After all the symplectic eigenvalues are obtained, the symplectic eigen expansion Eq.(19) can be 

given explicitly by substituting the symplectic eigenvalues and the corresponding eigenvectors listed 

above. The characteristic equations can be solved numerically by using Newton iteration method.  

5.  Symplectic analytical singular element (SASE) 

In this section, an analytical singular element for steady-state thermal conduction problem of 

bimaterial crack is constructed as shown in Fig.2. The interior fields of proposed element are described 

by using the analytical symplectic eigen solutions, hence it is termed as the “symplectic analytical 

singular element (SASE)”. Taking advantages of the proposed SASE, numerical solution of GFIFs can 

be solved. The present singular element with radius ρ  is connected with the surrounding conventional 

elements through the "export nodes" which are evenly distributed on the element's circumference as 

shown in Fig.2. The node indexes are arranged from 1 to P  as illustrated in Fig.2, and the number of 

nodes is not limited to a specific value, more export nodes will benefit the solving accuracy.  

Choosing the first finite expanding terms (here we choose the first P  terms) from Eq.(19) as trial 

functions: 

 
( )* ( ) ( )

1

jP j j
Tj

T eξµγ ψ
=

=∑ , 
( )* ( ) ( )

1

jP j j
r rj
S eξµγ ψ

=
=∑  (33) 

The superscript " * " represents trial function to distinguish from full eigen expansion Eq.(19). In this 

way the unselected expanding terms in Eq.(19) are ignored and will introduce error as a result. But when 

sufficient expanding terms are selected the resulted error can be limited. Rewrite the trial functions in 

the form of matrix gives: 

 * T
TT = f Aγ , * T

r rS = f Aγ  (34) 

where (1) (2) ( ) T[ , ,... ]Pγ γ γ=γ  is the vector of unknown eigen expanding coefficients and 
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 (0) (1) (2)

diag( , , ...)e e eξµ ξµ ξµ=A  (35) 

 (1) (2) ( ) T[ , ,... ]PT T T Tψ ψ ψ=f , (1) (2) ( ) T[ , ,... ]Pr r r rψ ψ ψ=f  (36) 

Substituting the -thi  export node's coordinates ( , )iρ θ  (Noted here that the angular coordinate iθ  should 

be considered in the sub-coordinate system) into the above expressions, the nodal temperature vector 
T

1 2[ , ,... ]PT T T=t  can be specified by 

 t = LBγ  (37) 

where (1) (2) (3)

diag( , , ...)µ µ µρ ρ ρ=B  and L  is the transform matrix specified by 

 

(1) (2) ( )
1 1 1

(1) (2) ( )
2 2 2

(1) (2) ( )

( ), ( ),... ( )
( ), ( ),... ( )

...
( ), ( ),... ( )

P
T T T

P
T T T

P
T N T N T N

ψ θ ψ θ ψ θ

ψ θ ψ θ ψ θ

ψ θ ψ θ ψ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L  (38) 

The unknown expanding coefficients can be expressed by the nodal temperature as 

 1 1− −= B L tγ  (39) 

Hence the interior fields can be expressed by using the nodal temperature as 

 * T 1 1
TT − −= f AB L t , * T 1 1

r rS − −= f AB L t  (40) 

The above formulas can be generally recognized as the “shape functions” in the frame of FEM although 

they are not standard polynomial forms of FEM shape functions. Substituting the above trail functions 

into the variational principle Eq.(11) and consider that the trial functions satisfy the requirements of 

fundamental equations in the discussed domain and homogeneous boundary conditions on the crack 

surfaces, the variational principle can be simplified into 

 { }* *

0

( )3

1 ln
δ d 0i i

r

C

i
T S

α

ξ ρ
θ

= =
⎡ ⎤ =⎣ ⎦∫∑  (41) 

Taking advantage of the above variational principle, the stiffness matrix can thus be derived and 

specified by 

 ( )( )3T T 1
1 0

di iC

T ri

α
θ− −

=∑ ∫K = L f f L  (42) 

Notice that the integration domain for each material is from 0  to iα  in the sub coordinate system i iOCθ . 

Assembling the stiffness matrix into the global stiffness matrix, then the original problem can be solved 

numerically. 
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6.  Discussion 

The calculation method of GFIFs and the integration of the proposed SASE should be discussed 

separately. According to Eq. (42), it can be found that the integration for the proposed 2D circular 

element is done over its circumference (which is a 1D domain), and this feature of the proposed SASE 

simplifies the integration procedures compared with conventional 2D elements. Furthermore, since all 

the components in Tf  and rf  are given explicitly, the integration can be done analytically without any 

difficulty. 

After solving global equation of the FEM system, the nodal temperature can be solved, and then the 

GFIFs can be solved directly by Eq.(39). Hence, the complex post-processing is unnecessary in the 

present method. 

7.  Modelling 

Cracked disc: Consider a unit disc as well as the FE mesh as shown in Fig.3. The boundary conditions 

on the lower crack surface 1Γ  and upper surface 2Γ  are specified by 

 1 20,   on  ,    / 0,  on  T T θ= Γ ∂ ∂ = Γ  (43) 

And the boundary condition on the circular portion RΓ  of the disc is specified by 

 / ,     on  RT r y∂ ∂ = Γ  (44) 

In the FE mesh, the crack tip area is occupied by the proposed SASE while the other areas are meshed 

by using conventional isoparametric bilinear elements. The characteristic equation of symplectic 

eigenvalue for the present problem can be obtained from Eq.(27), and the eigenvalues can be solved 

analytically and specified by (2 1) / 4, 1,2,3,...n nµ = − = . The approximate solution for this steady-state 

thermal conduction is specified by[12]: 
1/4 3/4 5/4 7/4( , ) 1.35812 sin( / 4) 0.970087 sin(3 / 4) 0.452707 sin(5 / 4) ( )T r r r r O rθ θ θ θ= − + − +  (45) 

In Tab.1Error! Reference source not found., the predictions of GFIFs are listed and the 

convergence studies on the number of export nodes of the proposed SASE are also illustrated. It is found 

that when 17 export nodes are used the relative error is less than 2.0%. But when the number of export 

nodes increase to 31, the present predictions are very accurate and the relative error is negligible. In 

Fig.4, the contours of heat flux densities with unit thermal conductivity are illustrated, it is shown that 

the distribution of heat fluxes is very smooth and strong concentrations in the vicinity of crack tip can 

easily be observed. 
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Bimaterial cracked disc: Consider a cracked disc which is composed of two different materials as 

shown in Fig.5. Specially, the bimaterial crack locates along the material interface is also considered. 

The boundary conditions are kept the same as the above single material cracked disc. The thermal 

conductivities are 1 2/ 1/ 2k k =  and the vertex angles satisfy 2α π= , 1 3α α π+ = .  

For the special case shown in Fig.5(a) the eigenvalues can be obtained by solving the characteristic 

equation Eq.(27) which, for this special case, can be solved analytically and the eigenvalues are 

specified by 1 2arctan( / )k kµ = ± . The present results of GFIFs of the case shown in Fig.5(a) obtained 

by using different numbers of export nodes of SASE are listed in Tab.2. While for a general case where 

1 /4α π= , the symplectic eigenvalues should be obtained by solving the characteristic equation Eq.(27) 

numerically, and the first few numerical results of the symplectic eigenvalues are listed in Tab.3. The 

explicit expressions of the corresponding eigenvectors can be obtained by substituting the symplectic 

eigenvalues into Eq.(28)-(30). The present results of GFIFs obtained by using different numbers of 

export nodes of the SASE are listed in Tab.4. The predictions listed in Tab.2 and Tab.4 also provide a 

convergence study on the number of the SASE's export node which is of crucial importance in practical 

usage. In view of the obtained results, it is found that with the increase of the export nodes, the 

numerical predictions trend to converge. And for all the discussed cases, it is observed that 31 export 

nodes are sufficient enough to obtain excellent solving accuracy.  

The contours of heat flux densities around the crack tip with unit 1k  are shown in Fig.6 and Fig.7, 

respectively. It is interesting to find that qθ  is continuing over the domain but rq  is not. Besides, the 

value of qθ on the lower crack surface are zero. According to these numerical results, it can be found 

that the present method strictly satisfy the requirements of the compatibility conditions Eq.(3) and (4) on 

the material interface as well as the boundary condition on the crack surfaces. In addition, thanks to the 

advantages of the proposed SASE, the predictions around crack tip fields are very accurate. 

Bimaterial inclined edge crack: Consider 2W W× bimaterial rectangular plate containing an edge 

crack as shown in Fig.8. The lower surface of the crack is insulated while the temperature on the upper 

surface of the crack is zero. The left and right sides of the plate are also insulated. The temperatures on 

the lower and upper sides of the plate are 1T  and 2T , respectively. The sketch of the plate as well as the 

finite element mesh are shown in Fig.8, whereas the crack tip area is occupied by using the present 

SASE while the other areas are meshed using conventional isoparametric bilinear elements. The 
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symplectic eigenvalues are listed in Tab.3. In this example o
1 100 CT =  is chosen and the numerical 

results of GFIFs with the variation of 2T  are listed in Tab.5. It is observed that the values of 1γ , 3γ , 

4γ and 5γ  increase monotonically with 2T , while the values of 2γ  decrease with 2T . 

8. Conclusion 

The steady-state thermal conduction with singularities resulted from inclined cracks terminate at 

the material interface in composite structures is investigated systematically. By using the symplectic 

dual approach, the analytical symplectic eigenvalues are obtained, explicit forms of the symplectic eigen 

solutions are specified. Then, a novel symplectic analytical singular element (SASE) is constructed 

based on the obtained symplectic eigen solution. The interior fields of the proposed SASE are accurately 

described by the higher order symplectic eigen solutions, therefore the generalized flux intensity factors 

(GFIFs) can be solved with highly solving accuracy. According to the numerical results, it is shown that 

the solving accuracy of the present method is satisfactory when 17 export nodes are used. And when 31 

export nodes are used the relative errors are negligible. In addition, the GFIFs can be solved directly 

without any prost-processing. The present method can be further extended for the thermal conduction 

problem in anisotropic materials, and it will be reported in the future. 
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Tab.1 Predictions on the GFIFs of the cracked single material disc 

Export Node Num. 1γ  Err% 2γ  Err% 3γ  Err% 

13 -1.3361763 -1.61574 0.93698025 -3.41276 -0.42601371 -5.89637 

17 -1.3456556 -0.91777 0.95223888 -1.83985 -0.44502567 -1.69676 

31 -1.3581286 0.00063 0.97008793 0.00009 -0.45270759 0.00013 

Ref.[12] -1.35812 --- 0.970087 --- -0.452707 --- 
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Tab.2 GFIFs of the bimaterial cracked disc for the case 1 0α =  

Export Node Num. 1γ  2γ  3γ  

13 -1.11847290 0.66341500 -0.30219865 

17 -1.12416167 0.67356153 -0.31717382 

25 -1.13012358 0.68743453 -0.33165312 

31 -1.13079258 0.68531990 -0.33510741 
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Tab.3 Numerical solutions of the first few symplectic eigenvalues for the case 1 / 4α π=  

1n =  2 3 4 5 6 7 

0.26383 0.68845 1.17606 1.78928 2.21072 2.82394 3.31155 
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Tab.4 GFIFs of the bimaterial cracked disc for the case 1 / 4α π=  

Export Node Num. 1γ  2γ  3γ  

13 -7.91930310 3.00392948 -0.96284920 

17 -7.94993727 3.07362578 -0.96324238 

25 -7.97847336 3.06983473 -0.98373263 

31 -7.98930310 3.06585605 -0.98328557 
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Tab.5 GFIFs of the bimaterial inclined edge crack 

o
2 ( C)T  1γ  2γ  3γ  4γ  5γ  

0 30.424592  5.029149  0.668151  1.096963  -0.980787  

40 38.654873  4.774610  2.692545  1.463760  -0.865410  

80 46.885155  4.520071  4.716940  1.830557  -0.750032  

120 55.115437  4.265532  6.741335  2.197354  -0.634655  

160 63.345719  4.010993  8.765729  2.564151  -0.519278  

200 71.576001  3.756454  10.790124  2.930948  -0.403900  
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Captions of figures 

Fig.1 Inclined bimaterial crack and the sub-coordinate system 

Fig.2 The SASE for bimaterial crack terminate at the interface 

Fig.3 A cracked disc and the FE mesh with the SASE 

Fig.4 Contours of heat flux densities around the crack tip 

Fig.5 Bimaterial disc containing a inclined interface crack 

Fig.6 Contours of heat flux densities around the bimaterial crack tip for the case 1 0α =  

Fig.7 Contours of heat flux densities around the bimaterial crack tip for the case 1 /4α π=  

Fig.8 A bimaterial edge crack in a rectangular plate and the FE mesh 
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Fig.1 Inclined bimaterial crack and the sub-coordinate system 
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Fig.2 The SASE for bimaterial crack terminate at the interface 
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Fig.3 A cracked disc and the FE mesh with the SASE 
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 (a) qθ  (b) rq  

Fig.4 Contours of heat flux densities around the crack tip 
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 (a) crack along material interface (b) 1 / 4α π=  

Fig.5 Bimaterial disc containing a inclined interface crack 
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 (a) qθ  (b) rq  

Fig.6 Contours of heat flux densities around the bimaterial crack tip for the case 1 0α =  
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 (a) qθ  (b) rq  

Fig.7 Contours of heat flux densities around the bimaterial crack tip for the case 1 /4α π=  
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Fig.8 A bimaterial edge crack in a rectangular plate and the FE mesh 

 


