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Abstract: In modern design of composite structures, multiple materials with different properties are
bounded together. Accurate prediction of the strength of the interface between different materials,
especially with the existence of cracks under thermal loading, is demanded in engineering. To this end,
detailed knowledge on the distribution of temperature and heat flux is required. This study conducts a
systematical investigation on the cracks terminated at material interface under steady-state thermal
conduction. A new symplectic analytical singular element is constructed for the numerical modeling.
Combining the proposed element with conventional finite elements the generalized flux intensity factors
can be solved accurately.
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Nomenclature
A,B coefficients of the general solution of symplectic eigenvector
F vector of coefficients of the general solution of symplectic eigenvector
H Hamiltonian operator matrix
k thermal conductivity
M (i=123) material
q., 49, heat flux densities
R chain matrix relates the eigenvectors of two adjacent materials
S, S, symplectic dual variables
T temperature
VA unknown vector in symplectic solving system
a vertex angle of material
(r,0) polar coordinate system
V? Laplacian operator
u symplectic eigenvalue
w(6) symplectic eigenvector
Yy, elements in symplectic eigenvector
Y coefficients of symplectic eigen expanding terms
S expression of characteristic equation of symplectic eigenvalue
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1. Introduction

Composite materials fabricated by combining two or more different materials are widely applied in
engineering for their advantages which are not attainable by any single engineering material. However,
extensive amount of interfaces between two different materials exist in such composite materials which
will possibly lead to delamination under thermal loading. For some cases, delamination migrates to the
adjacent interface in terms of a inclined crack terminated at the material interface!'!. According to the
previous study, it is known that not only stresses but also heat flux density possess singularity in the
vicinity of a crack tip!*l.

Many contributions have been reported in existing literatures. Kou studied bimaterial interface
crack between two semi-infinite dissimilar media subject to uniform heat flow, and obtained the
temperature distribution™). Chao and Chang investigated interface crack between dissimilar anisotropic
media based on the Hilbert problem formulation and a special technique of analytical continuation, and
obtained the analytical solution for steady-state heat conduction problem'. Chao et al. studied heat
conduction of curvilinear cracks in bounded dissimilar materials with heat source™. Marin proposed an
invariant method of fundamental solutions to investigated 2D steady-state anisotropic heat conduction
problems!®. Hasebe and Kato reported a closed-form solution for the bonded bimaterial planes at two
interfaces subject to different temperatures!’’.

For more general problems numerical methods such as finite element method (FEM) and boundary
element method (BEM) should be employed to get numerical predictions. Ling and Yang proposed a
virtual boundary meshless with Trefftz method to investigate the two dimensional (2D) steady-state heat
conduction problem for cracks and the heat stress intensity factor can be simply calculated™. Zhou et al.,
proposed a new numerical method for study of steady-state thermal conduction problem of bimaterial
interface cracks”’. Yosibash and his collaborators investigated systematically on the steady-state thermal
conduction problems with singularities, numerical solutions of the generalized flux intensity
factors(GFIF) were obtained based on post process operations in conjunction with FEM!® 12131
Yvonnet et al. investigated the Kapitza thermal resistance between two three dimensional (3D)
dissimilar materials by using extended finite element method (XFEM) in which the temperature jump

across the interface can be captured accurately with the aid of analytical solution!'",

]

The symplectic dual approach for elasticity!'”! was widely applied for studying crack problems

analytically and the analytical symplectic eigen solutions for bimaterial crack!'®), crack in pizeo-electric
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materia , and multi-material cracks under mechanical loading"” were obtained. Based on the

symplectic eigen solutions, a series of analytical singular elements were constructed for the numerical

[22

study of cracks®”, fatigue crack growth®', cracks in Reissner plate® and Dugdale cohesive model

based cracks®’!. Leung et al. employed the symplectic dual approach to the study of steady-state thermal

(24.251° And for the case of inclined crack terminated at

conduction problem analytically and numerically
the material interface, the states of stresses and temperatures are even more complex. As a result, it
brings significant challenge on both analytical study and numerical modeling of the progressive damage
in composite materials under thermal loading.

In the light of existing numerical methods for steady-state thermal conduction with singularities,
the combination of near crack tip asymptotic solution and conventional numerical methods such as FEM
brings many advantages. The rich information of thermal variables expressed in terms of eigen solution
should be applied to benefit the solving accuracy and efficiency. Motivated by this, the present study
first attempts to find the analytical symplectic eigen solution of steady-state thermal conduction in

inclined crack terminated at bimaterial interface. A symplectic analytical singular element (SASE) is

also developed for numerical simulation.
2. Fundamental equations

Considering an inclined bimaterial crack terminated at the material interface as shown in Fig.1,

each material is represented by M, (i =1,2,3) where M, =M, represents the same material while M,

nn

represents the other material. The subscript ",

is introduced to distinguish the different parts of material
1 separated by the crack. So the vertex angles satisfy &, +a, =7, and @, =7. Each part of the material can

be described under the sub polar coordinate system OC.f, as shown in Fig.1.
In terms of steady-state thermal conduction problem, the relationship between temperature and heat
flux densities in material M, can be specified by:

oT k T
q,; = —k, —, 4o, = _7£(l = 1,2,3) (1)

where T} is temperature and (¢, ,,9,,] is the vector of heat flux densities along each direction, and &, is

thermal conductivity. The steady-state heat conduction equation in the absence of the internal heat

source can be expressed in terms of temperature using the Laplacian operator V? as:

VT =0(i=1,2,3) 2)
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whereas the Laplacian operator in the polar coordinate system is V> =9 +(1/7)d, +(1/ rz)aé. The

interface between the two materials is assumed to be perfect bounded and the compatibility conditions at

the interface are specified by
Tz" |f),.=ai = Tz"+1 |5’I.+]=0 (l = 19 2) (3)
6,,,=0 (i =1, 2) 4)

The fundamental equations can also be derived from the following equation of dissipation of quantity of

4o, |Hi=ai =

heat specified by:

{2]’]’( ”az qj’% E(qrﬁqgl))rdrdﬁ}

Typical boundary conditions at the crack surfaces are combinations of specific temperature and/or

0 (5)

heat flux density, and the standard homogeneous boundary conditions can be summarized as

(i) prescribed temperature: T 145=0, T g, =0 (6)
(ii) prescribed temperature and heat flux: 7;| ho = 0, dTL,/06 | oy a, = (7)
(iii) prescribed heat flux: o7} /86’1|6l =0 0T /893|‘93=0[3 =0 (8)

nmn H "

The subscripts ", and " ;" will be omitted hereinafter except where it may cause confusion.
3. Symplectic eigen expansion

By introducing & =Inr, § =rg , S, =rq,, the variational principle Eq.(5) is transformed into an

equivalent form as:

T oT.
{Ef f ( — _6’ E(Sz S;,i))dfd@}=0 9)

Making the variation with respect to S, gives
S, =-k= (10)

Substituting S, into the variational principle to eliminate S, gives

aT, S} kT,
{Eff( AT 2(60))d§d6’} (11)
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Then make the variations of Eq.(11) with respect to 7', S, respectively, the symplectic dual equation can

Ji_ T _ 0 -1/K1[T .
ag[s,]_[kaz/w 0 ”S] (12)

r

be specified by

In the symplectic dual method, T is also recognized as the configuration variable while S, the dual

variable. Introduce Z =[7,S,]" and the above symplectic dual equation can be rewritten as

A-HZ (13)

where the dot ¢*” represents the partial differentiation with respect to &. Taking advantage of the
method of variable separation and assume that the solution is in the form of Z = e"fy/(H) the original
problem can be transformed into the symplectic eigenvalue problem
Hy(6) = 1y (6) (14)

where # and w(0) =[y,.w,.]" are the symplectic eigenvalue and the corresponding eigenvector.

Depending on different crack surface boundary conditions, zero eigenvalue and the corresponding
eigenvector may or may not exist for the current study, and they should be treated separately. For
nonzero eigenvalues, the above symplectic characteristic equation can be solved and the general solution
of eigenvectors can be specified by

(15)

) L[ sin(ub) cos(ub) 4
y @)=y, y] = [_kﬂsin(ﬂé’) —kMCOS(,Me)] [B]

where F =[ A, B]T is the vector of undetermined coefficients. Substituting the above eigenvector into

the compatibility conditions Eq.(2) and Eq.(3) at the interface gives
[kl. k., cos(ue,) -k Ik, sin(,ual.)} [Al.

i

sin(uc,) cos(ua,) B,

1

}, i=12 (16)

It is easy to found that the coefficient vectors F, and F;can be expressed by using F explicitly and the

general solution of eigenvectors ¥, and ¥;can be expressed as

_ sin(u6) cos(ub) 17
2'[—kzusin(w> -kz/JCOS(ﬂH)] - 0
3=[ sin(jué’) cos(ub) ]R2R1F1 (18)

—k;usin(ub)  —k;pcos(ub)
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The solution of the original problem can be given in the form of symplectic eigen expansion

7 = E )/(j)efﬂ(”y/(j)(g) (19)

J=1
where the superscript " )" is introduced to represent the j-th order eigen expanding pair, and y(j ) is the
corresponding eigen expanding coefficients. The eigen expanding terms in Eq.(19) are arranged in an
ascending order according to Re(u). Noted that the eigen solutions with Re(u) <0 are neglected in

Eq.(19) to ensure the boundedness condition of temperature at crack tip. Besides, the Jordan form eigen

solution corresponding to zero eigenvalue (if exist) is not considered in Eq.(19). Following the definition
of the generalized flux intensity factor (GFIF) by Ref.[12], the expanding coefficients }/(j '(j=12,..0)

are also recognized as the GFIFs. According to Eq.(19), the analytical solution can be obtained after

solving all the unknown GFIFs.

The unknown eigenvalues and the vector F| can be determined by the boundary conditions at the
two crack surfaces. Actually, the coefficients vector F, depends only on the boundary conditions on
6, = 0. Substituting the eigenvector of the first material into the boundary condition on 6, =0 gives the
nontrivial solution of F,

(a) F,=[10]", for 7], ,=0 (20)
(b) F =[0,1]", for (97,/90)l, ,=0 (21)
The eigenvalue should be decided by the boundary condition on 6, =¢;, substituting the

eigenvector into the boundary condition on 8, = ¢, gives

O(1) =0 (22)

and the symplectic eigenvalues can be solved from the above equation.
4. Symplectic eigen solution

The eigenvector corresponding to zero eigenvalue can be obtained by solving Hy(6) =0, it is
found that zero eigenvalue doesn’t exist if at least one crack surface is constrained by prescribed
temperature. For nonzero symplectic eigenvalues u = 0, substituting the expressions of the eigenvector
into the boundary conditions at crack surfaces and expand Eq.(22) will give the characteristic equation.

And the nonzero symplectic eigenvalues can be obtained by solving the characteristic equation.
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The characteristic equations for the three boundary condition cases are listed as follows:
(1) for prescribed temperature Eq.(6), zero eigenvalue does not exist, and the characteristic equation for

nonzero eigenvalue is specified by

(k, +k,)sin(2zue) + (k, -k, ) sin(2ey ) H(k, — k,)sin (2p(7r - ) )=0 (23)
The eigenvectors for this type of boundary condition are given by
1
w, =[ sin(u) (24)
—uk,
[ 1
W, = i l (cos(uO)sin(ua,) + k, / k, cos(ua, ) sin(ud)) (25)
A

W, = ] } [cos(ub) (cos(ur)sin(ua,) +k, / k, sin(ur) cos(ua,)) +
—uk, (26)

sin(u6) (cos(um)cos(ua,) -k, / k, sin(um)sin(ua,) )]
(i1) for prescribed temperature and heat flux Eq.(7), zero eigenvalue does not exist, and the characteristic

equation for nonzero eigenvalue is specified by

(k= k,”)cos(2u(m - o))+ (k, +k, ) cos(2au) + (k,” k) cos(2e, ) - (k, = k,)*=0 (27)
The eigenvectors for this type of boundary condition are given by
v, = }cos(uﬁ) (28)
_‘ﬂh
v, = lCOS(ual)COS(W) (29)
_‘ﬂ@
[ 1
W, = } [cos(u6) (cos(ur)cos(ua) -k, / k, sin(um)sin(ua,)) -
—uk, (30)

sin(ué) (COS(ﬂJZ) sin(ua,) + k, / k, sin(ur) cos(ua,) )]
(ii1) for prescribed heat flux Eq.(8), zero eigenvalue exists and the corresponding eigenvector is
1//“) =[1 0]" which represents steady temperature field with zero heat fluxes and temperature
uniformly distributed everywhere. In addition, the first grade Jordan form eigenvector !//511) should
satisfy Hl//yl) =", and can be solved and specified by 1/1311) =[0 -k]". The first grade Jordan form

eigenvector forms the corresponding Jordan form eigen solution as

vy =i +&p =[§ kT 31)
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which is a temperature filed with a center heat generation. It can be proven that the second grade of
Jordan form does not exist and the Jordan chain breaks here. For nonzero eigenvalue, the characteristic

equation is specified by
(k, - k,)sin(2e ) - (k, + k, ) sin(2u) - (k, = k,) sin (2 (e, - 7)) =0 (32)

The expressions of the corresponding eigenvectors for this type of boundary condition are in the same
form with the case (i) given above in Eq.(24)-(26), but it should be noted that the nonzero eigenvalues
for these two cases are different, so the explicit forms of the corresponding eigenvectors are different
after substituting the eigenvalues into the formulas given in case (i).

After all the symplectic eigenvalues are obtained, the symplectic eigen expansion Eq.(19) can be
given explicitly by substituting the symplectic eigenvalues and the corresponding eigenvectors listed

above. The characteristic equations can be solved numerically by using Newton iteration method.
5. Symplectic analytical singular element (SASE)

In this section, an analytical singular element for steady-state thermal conduction problem of
bimaterial crack is constructed as shown in Fig.2. The interior fields of proposed element are described
by using the analytical symplectic eigen solutions, hence it is termed as the “symplectic analytical
singular element (SASE)”. Taking advantages of the proposed SASE, numerical solution of GFIFs can
be solved. The present singular element with radius # is connected with the surrounding conventional
elements through the "export nodes" which are evenly distributed on the element's circumference as
shown in Fig.2. The node indexes are arranged from 1 to P as illustrated in Fig.2, and the number of
nodes is not limited to a specific value, more export nodes will benefit the solving accuracy.

Choosing the first finite expanding terms (here we choose the first P terms) from Eq.(19) as trial

functions:
* P () g:(/) () * P () 5(]) (j)
L N A U W A (33)
The superscript """ represents trial function to distinguish from full eigen expansion Eq.(19). In this
way the unselected expanding terms in Eq.(19) are ignored and will introduce error as a result. But when

sufficient expanding terms are selected the resulted error can be limited. Rewrite the trial functions in

the form of matrix gives:
T =f'Ay, S = f'Ay (34)

where y =[y", y®,..y"T" is the vector of unknown eigen expanding coefficients and

Y
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A =diag(e™”, " %7 ) (35)
fr=w 0T =P T (36)

Substituting the i-th export node's coordinates (0,6,) (Noted here that the angular coordinate &, should
be considered in the sub-coordinate system) into the above expressions, the nodal temperature vector

t=[T,T,,..T,]" can be specified by

t= LBy (37)

(2)

where B = diag( p/‘“) o1, p”m ...) and L is the transform matrix specified by

v (0).92(6),..p7(6)

1| ¥ @) (0,97 (6,) (38)

vy (0097 0,37 ()
The unknown expanding coefficients can be expressed by the nodal temperature as
y=B'L't (39)
Hence the interior fields can be expressed by using the nodal temperature as
T =fAB'L't, S = f'AB'L't (40)
The above formulas can be generally recognized as the “shape functions” in the frame of FEM although
they are not standard polynomial forms of FEM shape functions. Substituting the above trail functions
into the variational principle Eq.(11) and consider that the trial functions satisfy the requirements of

fundamental equations in the discussed domain and homogeneous boundary conditions on the crack

surfaces, the variational principle can be simplified into

6{231 s, ]\E=lnpd9} =0 (41)

Taking advantage of the above variational principle, the stiffness matrix can thus be derived and

specified by
K=L" (231 ﬁ)“”(c’) f ferﬁ)L‘l (42)

Notice that the integration domain for each material is from 0 to ¢; in the sub coordinate system OC.6.

Assembling the stiffness matrix into the global stiffness matrix, then the original problem can be solved

numerically.

10
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6. Discussion

The calculation method of GFIFs and the integration of the proposed SASE should be discussed
separately. According to Eq. (42), it can be found that the integration for the proposed 2D circular
element is done over its circumference (which is a 1D domain), and this feature of the proposed SASE
simplifies the integration procedures compared with conventional 2D elements. Furthermore, since all

the components in f; and f, are given explicitly, the integration can be done analytically without any

difficulty.
After solving global equation of the FEM system, the nodal temperature can be solved, and then the
GFIFs can be solved directly by Eq.(39). Hence, the complex post-processing is unnecessary in the

present method.
7. Modelling

Cracked disc: Consider a unit disc as well as the FE mesh as shown in Fig.3. The boundary conditions

on the lower crack surface I, and upper surface I', are specified by
T=0, onI|,, dT/36=0, on T, (43)
And the boundary condition on the circular portion I', of the disc is specified by

0T /or=y, on T, (44)

In the FE mesh, the crack tip area is occupied by the proposed SASE while the other areas are meshed
by using conventional isoparametric bilinear elements. The characteristic equation of symplectic
eigenvalue for the present problem can be obtained from Eq.(27), and the eigenvalues can be solved
analytically and specified by u=(2n-1)/4,n=1,2,3,.... The approximate solution for this steady-state

thermal conduction is specified by

T(r,0) = -1.35812r"*sin(6/ 4) +0.970087r"* sin(30 / 4) - 0.452707"* sin(50 / 4) + O(r"*) ~ (45)

In Tab.1Error! Reference source not found., the predictions of GFIFs are listed and the
convergence studies on the number of export nodes of the proposed SASE are also illustrated. It is found
that when 17 export nodes are used the relative error is less than 2.0%. But when the number of export
nodes increase to 31, the present predictions are very accurate and the relative error is negligible. In
Fig.4, the contours of heat flux densities with unit thermal conductivity are illustrated, it is shown that
the distribution of heat fluxes is very smooth and strong concentrations in the vicinity of crack tip can

easily be observed.

11
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Bimaterial cracked disc: Consider a cracked disc which is composed of two different materials as
shown in Fig.5. Specially, the bimaterial crack locates along the material interface is also considered.
The boundary conditions are kept the same as the above single material cracked disc. The thermal

conductivities are k, / k, =1/2 and the vertex angles satisfya, =7, ¢, +a, =7.

For the special case shown in Fig.5(a) the eigenvalues can be obtained by solving the characteristic

equation Eq.(27) which, for this special case, can be solved analytically and the eigenvalues are
specified by u =arctan(+/k, / k,). The present results of GFIFs of the case shown in Fig.5(a) obtained

by using different numbers of export nodes of SASE are listed in Tab.2. While for a general case where
o, =n/4, the symplectic eigenvalues should be obtained by solving the characteristic equation Eq.(27)

numerically, and the first few numerical results of the symplectic eigenvalues are listed in Tab.3. The
explicit expressions of the corresponding eigenvectors can be obtained by substituting the symplectic
eigenvalues into Eq.(28)-(30). The present results of GFIFs obtained by using different numbers of
export nodes of the SASE are listed in Tab.4. The predictions listed in Tab.2 and Tab.4 also provide a
convergence study on the number of the SASE's export node which is of crucial importance in practical
usage. In view of the obtained results, it is found that with the increase of the export nodes, the
numerical predictions trend to converge. And for all the discussed cases, it is observed that 31 export

nodes are sufficient enough to obtain excellent solving accuracy.

The contours of heat flux densities around the crack tip with unit &, are shown in Fig.6 and Fig.7,
respectively. It is interesting to find that g, is continuing over the domain but ¢, is not. Besides, the

value of g, on the lower crack surface are zero. According to these numerical results, it can be found

that the present method strictly satisfy the requirements of the compatibility conditions Eq.(3) and (4) on
the material interface as well as the boundary condition on the crack surfaces. In addition, thanks to the
advantages of the proposed SASE, the predictions around crack tip fields are very accurate.

Bimaterial inclined edge crack: Consider W x2W bimaterial rectangular plate containing an edge
crack as shown in Fig.8. The lower surface of the crack is insulated while the temperature on the upper

surface of the crack is zero. The left and right sides of the plate are also insulated. The temperatures on
the lower and upper sides of the plate are 7} and T,, respectively. The sketch of the plate as well as the

finite element mesh are shown in Fig.8, whereas the crack tip area is occupied by using the present

SASE while the other areas are meshed using conventional isoparametric bilinear elements. The

12
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symplectic eigenvalues are listed in Tab.3. In this example 7, =100 °C is chosen and the numerical
results of GFIFs with the variation of 7, are listed in Tab.5. It is observed that the values of ¥,, 75,

y,and Js increase monotonically with T, , while the values of 7, decrease with T, .

8.Conclusion

The steady-state thermal conduction with singularities resulted from inclined cracks terminate at
the material interface in composite structures is investigated systematically. By using the symplectic
dual approach, the analytical symplectic eigenvalues are obtained, explicit forms of the symplectic eigen
solutions are specified. Then, a novel symplectic analytical singular element (SASE) is constructed
based on the obtained symplectic eigen solution. The interior fields of the proposed SASE are accurately
described by the higher order symplectic eigen solutions, therefore the generalized flux intensity factors
(GFIFs) can be solved with highly solving accuracy. According to the numerical results, it is shown that
the solving accuracy of the present method is satisfactory when 17 export nodes are used. And when 31
export nodes are used the relative errors are negligible. In addition, the GFIFs can be solved directly
without any prost-processing. The present method can be further extended for the thermal conduction

problem in anisotropic materials, and it will be reported in the future.
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Tab.1 Predictions on the GFIFs of the cracked single material disc

Export Node Num. Y, Err% 7, Err% 73 Err%
13 -1.3361763  -1.61574  0.93698025 -3.41276  -0.42601371  -5.89637
17 -1.3456556  -0.91777 0.95223888  -1.83985  -0.44502567 -1.69676
31 -1.3581286  0.00063  0.97008793  0.00009 -0.45270759  0.00013
Ref.[12] -1.35812 --- 0.970087 --- -0.452707 ---
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Tab.2 GFIFs of the bimaterial cracked disc for the case @ =0

Export Node Num. Y, 14} 73

13 -1.11847290 0.66341500 -0.30219865
17 -1.12416167 0.67356153 -0.31717382
25 -1.13012358 0.68743453 -0.33165312
31 -1.13079258 0.68531990 -0.33510741
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Tab.3 Numerical solutions of the first few symplectic eigenvalues for the case o, =7/4

n=1 2 3 4 5 6 7

0.26383 0.68845 1.17606 1.78928 2.21072 2.82394 3.31155
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Tab.4 GFIFs of the bimaterial cracked disc for the casea, =7 /4

Export Node Num. Vi 2 73

13 -7.91930310 3.00392948 -0.96284920
17 -7.94993727 3.07362578 -0.96324238
25 -7.97847336 3.06983473 -0.98373263
31 -7.98930310 3.06585605 -0.98328557
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Tab.5 GFIFs of the bimaterial inclined edge crack

.L,(°C) Vi I8 /s Vs /s

0 30.424592 5.029149 0.668151 1.096963 -0.980787
40 38.654873 4.774610 2.692545 1.463760 -0.865410
80 46.885155 4.520071 4.716940 1.830557 -0.750032
120 55.115437 4.265532 6.741335 2.197354 -0.634655
160 63.345719 4.010993 8.765729 2.564151 -0.519278
200 71.576001 3.756454 10.790124 2.930948 -0.403900
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Captions of figures

Fig.1 Inclined bimaterial crack and the sub-coordinate system
Fig.2 The SASE for bimaterial crack terminate at the interface
Fig.3 A cracked disc and the FE mesh with the SASE

Fig.4 Contours of heat flux densities around the crack tip

Fig.5 Bimaterial disc containing a inclined interface crack

Fig.6 Contours of heat flux densities around the bimaterial crack tip for the case «, =0

Fig.7 Contours of heat flux densities around the bimaterial crack tip for the case o =7/4

Fig.8 A bimaterial edge crack in a rectangular plate and the FE mesh
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Temperature

Fig.1 Inclined bimaterial crack and the sub-coordinate system
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Temperature
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Fig.2 The SASE for bimaterial crack terminate at the interface
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Fig.3 A cracked disc and the FE mesh with the SASE
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(a) g4 ®) g,

Fig.4 Contours of heat flux densities around the crack tip
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r=1

(a) crack along material interface (b) @, =x/4

Fig.5 Bimaterial disc containing a inclined interface crack
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(a) 4, (b) ¢,

Fig.6 Contours of heat flux densities around the bimaterial crack tip for the case ¢, =0
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(a) 4, (b) ¢,

Fig.7 Contours of heat flux densities around the bimaterial crack tip for the case a, = /4
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Fig.8 A bimaterial edge crack in a rectangular plate and the FE mesh
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