

The development and evaluation of a sensor-fusion and adaptive algorithm for detecting real-time upper-trunk kinematics, phases and timing of the sit-to-stand movements in stroke survivors

Presenter: Siu Ho (4th year, Doctor of Engineering)

Other authors: Dr Andy Kerr, Dr Avril Thomson

Background

- Stroke
 - The largest cause of complex disability in adults (Adamson, Beswick, & Ebrahim, 2004)
- Sit-to-stand (STS)
 - Critical to activities of daily living
- Physical Rehabilitation
 - Regain functional movement
- Assign treatment plan
- Assess performance

(Janssen et al, 2010)

Clinical assessments

- Five times STS test (NHS)
- 30 Seconds Chair Stand Test
- Timed Up and Go test
 - Visual Observations
 - Accurate to quantify
 - Manually timed
 - Repetitions
 - Inexact to characterise
 - Biomechanical performance
 - Weight symmetry loading, velocity, angles

Adopting Technology

University of Strathclyde Glasgow

Analysis Performance

- Vicon motion capture
 - Markers + Large space for infrared red cameras
- Kinect
- Fixed force plate

Problems

- Restricted to Lab
- Time consuming
- Set-up
- "Unobstructable"

Fig. 1. Illustration of the Kinect-based 5STS.

(Roosink et al, 2015)

(Ejupi et al, 2016)

Hypothesis

University of Strathclyde Glasgow

Wearable Technology

- Inertial Measurement Unit (IMU)
 - Low-cost
 - Mini-natured
 - Plug-and-Play
 - Low power and high performance

Developed Algorithm

- Healthy Individuals (Cerrito, Bichsel, Radlinger, & Schmid, 2014)
- Elderlies (Guimaraes, Ribeiro, & Rosado, 2013)
- Other disorders (Zijlstra, Mancini, Lindemann, Chiari, & Zijlstra, 2012) (Van Lummel et al., 2012)
- No stroke

Sit-to-stand Event Detection

1. Initiation

2. Seat-off

4. Stand

Orientation Estimation

Accelerometer

- Measuring g-forces
- Trigonometry to find inclinations
- External acceleration
- No drifts ©

Gyroscope

- Not affected by external acceleration ©
- Integration drift ⊗

University of

Strathclvde

University of Strathclyde Glasgow

Sensor Fusion Algorithm

- Mixing data from accelerometer and gyroscope
- Observe measurements (noise/inaccuracies)

Time Update

- 1. Project state ahead $\theta_{est k} = A \theta_{est k-1} + Bu_k + w_{k-1}$
- 2. Project Error covariance (P)

$$P_k^- = AP_{k-1} A^T + Q$$

Measurement Update

- Calculate Kalman Gain (K)
 K_k = P⁻_k H^T (HP⁻_k H^T + R)⁻¹
- 2. Update estimate $\theta_{\text{est k}} = \theta_{\text{est k}} + K_{\text{k}} (\theta_{\text{gyro}} H \theta_{\text{acc k}})$
- 3. Update error covariance $P_k = (1-K_k H) P_k^{-1}$

A = State transition matrix
B = Optional control matrix
u_k = known system inputs
w_{k-1} = process noise vector
Q = covariance matrix

H = system observation matrix

T = Transpose

Accelerometer

- - Accumulation of errors
- Need to remove gravity
 - Gravity offset Inclination
 - Sensitivity

Balance-plate

- Centre of pressures
- Predict velocity
 - Need acceleration estimation

Sensor Fusion Algorithm

Implementation and Testing

Capture STS performance via Vicon and Sensors

- Processed on Vicon Nexus and MatLab
- Design algorithms and filters + simulations

Performance Algorithms V.S. Vicon

LabView (C, Mathscript code)

Results – Angle Estimation

Accelerometer

- Under and overestimated
- Linear acceleration
- Gravity

Gyroscope

- Overestimated
- Inaccuracy in raw signal
- Integration drifting

Sensor-Fusion

- Close estimate
- Delay (filtering)

Results – Velocity Estimation

Slow motion

- Closely matched
- Smoothed by filters

Quick motion

- Small systematic bias
- Lower mean and peak vertical velocity
- Illegible with slower STS

Discussion

Further Improvement

- Inconsistent sampling rate
- Better IMU
- More stroke survivors involve (e.g. those who can't stand-up)
- Diagnostic platform
 - Feedback on performance

Conclusion

- New approach in tracking STS movement
 - Sensor-Fusion
 - Finite State Machine
- Validated, Vicon and stroke survivors
- Estimate, Track and Analyse

Thank you so much for your attention!

Any Questions?