Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Tanker ship structural analysis for intact and damage cases

Fernandez, R. and Lazakis, I. and Theotokatos, G. and Boulougouris, E. (2016) Tanker ship structural analysis for intact and damage cases. In: International Conference of Maritime Safety and Operations 2016, 2016-10-13 - 2016-10-14, University of Strathclyde.

Text (Fernandez-etal-MSO2016-Tanker-ship-structural-analysis-for-intact-and-damage-cases)
Final Published Version
License: All rights reserved

Download (994kB) | Preview


This paper presents the work carried out to assess the structural calculation of a tanker ship in intact and damage conditions, in order to know the areas of the central cargo ship exposed to greater stresses. Analysing the results obtained from the intact condition and damage conditions due to grounding. The method selected to simulate the damage conditions has been done applying a change in the mechanical properties of the material; reductions of 40, 60 and 80 % of Young Modules were applied. The validation of the results was made following the guidelines "Common Structural Rules for Bulk Carriers and Oil Tankers" from IACS. The finite element method and finite element analysis software (Ansys®) were used to analyse intact and ground-ing cases. For intact case only one scenario was done, full load condition. For grounding, three scenarios were done. The results presented correspond to the validation of the finite element model, and the results concern-ing the maximum value of Von Mises Stress for each load condition, verifying if the permissible stress has been exceeded in each of the conditions analysed.