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Abstract

In this paper, a three-dimensional phase-field lattice Boltzmann method is used
to simulate the dynamical behavior of a droplet, subject to an outer viscous flow,
in a microchannel that contains a cylindrical hole etched into its top surface.
The influence of the capillary number and the hole diameter (expressed as the
ratio of hole diameter to channel height, b) is investigated. We demonstrate
numerically that the surface energy gradient induced by the hole can create an
anchoring force to resist the hydrodynamic drag from the outer flow, resulting
in the droplet anchored to the hole when the capillary number is below a critical
value. As b increases, the droplet can be anchored more easily. For b < 2, the
droplet partially enters into the hole and forms a spherical cap; whereas for
b > 2, the spherical cap of droplet reaches the top wall of the hole, making
the hole depth into an additional important parameter. These observations are
consistent with the previously reported experiments. However, the droplet does
not fully fill the hole for b > 2, departing from the expectation of Dangla et
al. [R. Dangla, S. Lee, C. N. Baroud, Trapping microfluidic drops in wells of
surface energy, Phys. Rev. Lett. 107 (2011) 124501]. Also, it is observed in the
anchored state that the rear of the droplet rests at a small distance away from

the junction. Finally, the droplet undergoes a slow-down process only when its
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rear passes through the hole, regardless of b.
Keywords: Droplet manipulation, Microfluidics, Surface energy gradient,

Surface wettability, Lattice Boltzmann method

1. Introduction

Droplet-based microfluidics has recently emerged as a new and exciting tech-
nological platform for chemical, biological and pharmaceutical processes and
analyses. Manipulation of droplets in a precise and flexible manner plays a vital
role in these applications. A number of approaches have been commonly used
to manipulate the dynamical behavior of droplets in microfluidics, including
electrowetting on dielectric (EWOD) [1, 2], dielectrophoresis (DEP) [3, 4], hy-
drodynamic stress [5, 6, 7], thermocapillary force [8, 9, 10, 11], surface acoustic
wave [12], magnetic force [13, 14], and optical forces [15, 16]. In recent years,
a novel use of surface energy gradients was demonstrated to guide or anchor
droplets against a mean flow in a confined microchannel [17, 18]. The surface
energy gradient can be created by modulations of the channel height, e.g., by
etching a pattern of holes and grooves into the top surface of the channels.
Compared to commonly-used approaches, the use of surface energy gradients
for microdroplet manipulation has many advantages, such as simple operation
and high efficiency, and ease of parallelization that enables a high-throughput
production of droplet arrays for chemical or biomedical studies. Besides, it al-
so allows the use of continuous flow to control the chemical environment and
content of the trapped droplets, in both time and space.

The trapping mechanism of a confined droplet subject to a surface energy
gradient induced by a hole has been discussed in [18]. From a viewpoint of free
energy, a droplet tends to evolve towards the direction of decreasing its surface
free energy, which is equal to its surface area times the interfacial tension. Since
the hole allows the droplet to reduce its surface area and thus the surface en-
ergy, the droplet resists leaving it into a more squeezed region. The resistance

force is given by the surface energy gradient, which acts as an anchoring force



to block the droplet movement [18]. On the other hand, the drag force, exerted
by the outer flow, tends to push the droplet out of the hole. As a result, the
relative magnitude between the anchoring and drag forces determines whether
the droplet is anchored or not. Based on the balance between the two forces, an
analytical expression was derived to predict the shape of anchored droplet [18].
In this derivation, it is assumed that the droplet fluid completely repels the
walls and the ratio of hole diameter to channel height should be not more than
2. These assumptions will significantly restrict the usefulness of the analytical
formulae because various materials can be used to fabricate the channels with
different dimensions. Numerical modelling and simulations can complemen-
t theoretical and experimental studies, allowing us to visualize the transient
flowfiled and accurately quantify the interface structures for both anchored and
unanchored /released droplets. In addition, they are of potential to be extended
to multiple droplets or complex geometries for prospective applications such as
rails and anchors in [17]. However, it is challenging to use traditional computa-
tional fluid dynamics (CFD) methods, e.g., the volume-of-fluid (VOF) [19, 20]
and level-set (LS) methods [21, 22], for simulating the dynamical behavior of a
confined droplet in a microchannel because of the difficulties in modelling and
capturing the dynamic phase interfaces [23]. Also, minimization of unphysi-
cal spurious currents at the interface still remains a major challenge for these
methods. In addition, a suitable slip model with slip length at the molecular
scale has to be introduced to avoid stress singularities at the moving contact
line. Microscopically, the interface between different phases and the contact-line
dynamics on the solid surface are due to interparticle interactions [24]. Thus,
mesoscopic level models are expected to accurately describe the microdroplet
dynamics in a confined microchannel.

The lattice Boltzmann method (LBM) has been developed into a promis-
ing numerical tool for simulating complex fluid flows. Unlike the traditional
CFEFD methods, the LBM is built upon the mesoscopic kinetic equation for par-
ticle distribution functions. Due to its kinetic nature, the LBM has been found

to be particularly useful for the simulation of multiphase flows. In the LBM



community, a number of multiphase models have been proposed, and they can
be generally classified into four types, i.e., the color-fluid model [25, 26], the
interparticle-potential model [27, 28], the free-energy model [29, 30], and the
phase-field model [31, 32, 33, 34]. For a comprehensive review of these mod-
els, interested readers may refer to [23]. In this paper, a three-dimensional
(3D) phase-field LBM is used to simulate the dynamical behavior of a confined
droplet, subject to an external viscous flow, in a microchannel that contain-
s a cylindrical hole etched on the top surface. In this method, the spurious
currents are effectively suppressed by the use of an interfacial tension force of
potential form and the multiple-relaxation-time (MRT) model for fluid flow;
the contact-line dynamics is modeled by the method of Briant et al. [35], with
simple implementation for complex solid surface following Niu et al. [36]. We
show how the anchor blocks the droplet motion against an external flow and
investigate the influence of capillary number and hole diameter (expressed as
the ratio of hole diameter to channel height, b) on the droplet motion. In this
study, the walls are not limited to perfect hydrophobicity to the droplet (i.e.
the contact angle of the droplet on the solid walls is not necessarily equal to 180
degrees), and the ratio of hole diameter to channel height is not limited to the
case of b < 2, thus complementing the previous study by Dangla et al. [18] and
enhancing our understanding of the trapping behavior of a droplet in surface

energy wells.

2. Numerical Method

2.1. Phase-field theory

We consider here a phase-field lattice Boltzmann model for incompressible
immiscible two-phase flows. Suppose that there are two incompressible immis-
cible fluids, say oil and water. The order parameter ¢ is utilized to identify
different fluids and is assumed to be constant in the bulk fluids, e.g. ¢ = —1 for
the bulk oil while ¢ = 1 for the bulk water. Across the interfacial region, there

is a rapid but smooth change of ¢. The time evolution of the diffuse interface



is governed by the Cahn-Hilliard equation (CHE) [37]
O+ - Vo= MV?p, (1)

where ¢ is the time,  is the fluid velocity, and M is the mobility. The chemical

potential p in Eq.(1) can be derived from the free-energy functional
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where A and k are the parameters related to the interfacial tension and the
interface thickness. By minimizing the free energy functional, the chemical

potential is given by

)
. % = AG(F — 1) — 1V, 3)

For a planar oil-water interface in a quiescent infinite system, the order

parameter profile across the interface can be obtained from Eq.(3) at =0,

¢(x) = tanh(z/¢), (4)

where z is the spatial location normal to the interface (z = 0), and £ is a
measure of the interface thickness, which is defined as £ = 2—;. The interfacial
tension o can be interpreted as the excess free energy per unit interface area,
and for a planar interface in equilibrium, it can be evaluated by
Y 0, 4k
o= /_OO K[V = (5)
With consideration of a constant interfacial tension, the Navier-Stokes equa-

tions (NSEs) for the incompressible fluid flows can be written as [11]
V-1 =0, (6)

p(0yl + it - Vi) = =Vp+ puVo + V - [n(Vii + Vil )], (7)

where p is the pressure, and p and 7 are the density and the viscosity of fluid
mixture. In a typical oil-water microfluidic system, the Bond number that

characterizes the relative importance of gravity and interfacial tension, is so



small that the effect of the density difference can be ignored. It is therefore
assumed, for simplicity, that both fluids have equal densities, which are given by
po- Note that the interfacial tension force in Eq.(7) is expressed as a potential
form, which produces much smaller spurious currents than its counterpart of
pressure form [38, 39, 11].

When the fluid-surface interactions are taken into account, the wetting con-
dition proposed by Briant et al. [35] is imposed at the solid wall, which provides

the boundary condition for the order parameter ¢,

ii-Vol, = —O\VA/2k, (8)

where 7i is the local normal direction of the wall pointing into the fluid, and ©
is the wetting potential, which is related to the contact angle 6 by

(1+©)32 - (1-0)%?
5 :

cos() = 9)

2.2. Lattice Boltzmann method

The NSEs and the CHE are solved in a LBM framework. Specifically, the
NSEs are solved using the MRT model, while the CHE is solved through the s-
tandard Bhatnagar-Gross-Krook (BGK) model. Two particle distribution func-
tions (PDFs) f;(#,t) and g;(#,t) are employed on each lattice site, where 4 is the
lattice direction. The first distribution function is related to the macroscopic
density p and the momentum j’, and the second distribution function captures

the order parameter ¢

S N N " -
p(Ia t) = Z fZ(:Ca t)v ](Ivt) = Z fZ(:Ca t)ei + EUV(batv ¢(I7t) = Zgl(xa t)v
(10)
where ; = pou, po is used instead of p to reduce compressibility effects in the

model [40, 41], and €; is the lattice velocity vector defined as
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for the 3D 19-velocity model (D3Q19). The lattice speed c is defined by ¢ =
0z /dt, where §, and 0; are the lattice spacing and time step, respectively. The
speed of sound ¢, is related to ¢ by ¢, = ¢/V/3.

The evolution equations of f;(#,t) and g;(Z,t) can be written as [11]
[il@+ @60t + 6;) — [i(E 1) = —(MTISM)y; [f5(2,1) — fLU(Z,1)] + 6:F;, (12)
S, = S 1 S eq;+
9i(T + €0, t +0¢) = gi(@, 1) = —— [gs(78) — 9; (%, 1)], (13)
g
where f7% and g;? are the equilibrium distribution functions of f; and g;, 7, is the
single relaxation parameter for g;, M is a transformation matrix, S is a diagonal

relaxation matrix, and F; represents the discrete forcing term accounting for the

interfacial tension force acting on the fluid mixture, which is given by
_ 1 .
F=M" (I — 5s) MF, (14)
where I is a unit matrix, F = [Fb, Fl, FQ, veey Flg]T, and F = [Fb, Fl, FQ, veey Flg]T.
The governing physics of LBM is determined through the hydrodynamic

moments of the equilibrium distribution functions and the forcing terms. The

moments of f{9, gi% and F; are:
Y fit =0 X fi%eia = pota, 3o, fi'eiatip = potiaus + pcidag,
i fileiacipeiy = PoCs (Baptiy + darytp + dpyta), (15)
259 = b 2.0 €ia = PUas 2 05 €iaip = Puatip + Lpdag,  (16)

Zi Fl =0, Zl Fieia = FSou Zz ﬁ‘ieiaeiﬁ = uaFSB+uBFSa' (17)

By satisfying these moments, f7%, g% and F; can be chosen as

e [ - (&-u)? i

it = wi|p+po (C—2+ 9t 92 || (18)
e [ - (&-u)? |

gt = wi Gi+¢(7+ ocd 9.2 )| (19)
- (e, —u (€ -1u)é;

Fi = w; =2 ( I ) ] - uV o, (20)

where the coefficient G; is given by

G, - Tu/c? (i >0) (21)

[0 — (1 —wo)Tu/cz] Jwo (i =0),



and w; is the weight factor with wy = 1/3, w1_¢ = 1/18 and wr_15 = 1/36.
The transformation matrix M is designed to contain more physically relevant

quantities, e.g. density, momentum, energy, and their fluxes, and is explicitly

given by

t 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
—30 =11 —11 —11 =11 =11 11 8 8 8 8 8 8 8 8 8 8 8 8
12 —4 —4 —4 —4 —4 —4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 -1 0 0 0 0 1 —-11—-11-11-100 0 0
0 -4 4 0 0 0 0 1 —-11-11-11-100 0 0
00 0 1 -1 0 0 1 1 —-1-1020 00 1 —11 —1
0 0 0 -4 4 0 0 1 1 -1-10 0 0 0 1 —1 1 —1
00 0 0 0 1 -1 0000 1 1 —-1-11 1 —1-1
0 0 0 0O 0O —-4 4 00 0 0 1 1 —-1-11 1 —1-1

M = 0 2 2 -1 -1 -1 -1 1 1 1 1 1 1 1 1 —2-2-2-2
0 —4 —4 2 2 2 2 1 1 1 1 1 1 1 1 —2-2-2-2
0o o 0o 1 1 -1 -1 1 1 1 -1-1-1-10 0 0 0
00 0 -2 -2 2 2 1 1 1 1 -1-1-1-10 0 0 0
0 0 0 0 0O 0 0 1-1-110 000 0 0 0 O
00 0 0 0O 0 0 0O OO0 00 0 0 1 —1—11
0 0 0 0O 0O 0O 0 0O OO0 1-1-11 100 0 0
00 0 0 0 0 0 1 —-11-1-11=11 00 0 0
0 0 0 0 0 0 0 —-1-11 10 0 0 0 1 —1 1 —1
0O 0 0 0 0O 0 0 00 OO0 1 1 —1-1-1-11 1

(22)
The diagonal relaxation matrix S is simply taken as

S =diag[0,1,1,0,1,0,1,1,1,w, 1, w, l,w,w,w, 1,1, 1], (23)

where w = 1/7; which is related to the kinematic viscosity by v = (17 — 0.5) ¢26;.
It was demonstrated by Pooley et al. [42] that the choice of Eq.(23) can greatly
suppress unphysical spurious currents in the vicinity of the contact line, avoiding
generation of incorrect contact angle in BGK LBM simulations. Note that the
use of MRT for reducing spurious currents at interfaces was also found in other
multiphase LBMs [43, 44, 11].

Using the Chapman-Enskog multiscale expansion, Eqgs. (12) and (13) can
lead to the hydrodynamic equations (6), (7) and (1) with the pressure p = pc?
in the limit of the low Mach number. The relaxation parameter 7, is related to
the mobility through [29]

M =T(1y — 0.5)d, (24)

where I' is a constant that appears in the equilibrium distribution function g;“.
Note that it is not necessary to adopt a MRT model for g; since one can simply

set 7, = 1 and independently use I' to control the mobility [42].



2.3. Boundary conditions

No-slip boundary condition is applied for all the solid walls by the half-
way bounce-back rule, which conveniently resolves the complex wall shapes and
prevents leakage of the fluid mass across the walls [45, 46]. The constant ve-
locity and pressure boundary conditions are imposed at the inlet and outlet by
the bounce-back of the non-equilibrium distribution rule developed by Zou and
He [47]. We assume that fluids are only one pure single-component at inlet
or outlet, where the unknown g¢; can be determined by the use of the method
proposed by Hao and Cheng [48].

The wetting boundary condition at the solid wall can be implemented fol-
lowing the method proposed by Niu et al. [36], which is capable of dealing
with complex solid boundaries with ease. In their method, the derivative of
order parameter in Eq.(8) is evaluated by the first-order finite difference as
On® = (¢ — ¢s)/0s, in which ¢, is the order parameter of the solid node and
¢y is the order parameter of fluid nodes adjacent to the solid node. By substi-
tuting the finite differences into Eq.(8) and averaging them over all fluid nodes

adjacent to the solid node, the order parameter ¢s can be approximated by

b5 = %ZNZ <¢f + \/g(%g : (25)

where IV is the total number of the fluid nodes which are nearest to the targeted
solid node. It is worth noting that the present model is a diffuse-interface model
with finite interface thickness. Although a no-slip boundary condition is used
at the solid walls, the motion of contact lines arises naturally as a result of the
diffusive flow that occurs in the diffuse interface region. Therefore, it is not
surprising that all of the phase-field LBM models have used no-slip boundary
condition at the solid walls for contact-line motion, see, e.g., Refs. [36, 48, 33, 49].

Once ¢y is determined, the gradient and Laplacian operators appearing in

Eqgs.(3) and (20) can be evaluated using 19-point finite difference stencils as



follows:
- 1 o oo
V(&) = 2, Z w; (T + €;04)€j, (26)

V2o(Z)

e Y (6@ + 18 — (@) (27)

which help to enhance the stability and accuracy of numerical model.

3. Results and discussion

In this section, we use the phase-field LBM to simulate the dynamical be-
havior of a confined water droplet, subject to an external flow of oil, in a mi-
crochannel that contains a cylindrical hole (i.e., anchor) of diameter between
d =60 and 112 pgm and of depth e = 32 um, as sketched in Fig.1. The channel
has a length of [ = 862 um in the z-direction and a width of w = 1000 pym in
the y-direction. The channel height is uniform except the part occupied by the
hole, which is A = 40 um. A cylindrical droplet of radius R = 160 pm is initially
centered at x¢o = yo = 250 um. All boundaries except the inlet and outlet are
considered as stationary walls with no-slip condition. The continuous phase oil
is injected continuously from the inlet at a flow rate ()., which is a constant in
each of the cases studied.

As indicated by a recent study [18], the migration of a confined droplet
in the surface energy gradients, which are induced by the etched hole, can
be characterized by three important dimensionless parameters: the capillary
number (Ca), the ratio of hole diameter to channel height (b = d/h), and the
normalized droplet radius (R = R/h). The capillary number relates viscous to
capillary forces and is defined as Ca = U.n. /o, where U, = Q./(wh) is the inlet
mean flow velocity. In addition, surface wettability also plays an important role
in determining the dynamical behavior of a moving droplet in a microchannel
due to large surface-to-volume ratio. In order to achieve experiment-matched
droplet behavior, it is necessary that the continuous phase preferentially wets

the walls [18]. The magnitude of wettability will be described by the contact
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Figure 1: Schematic of a water droplet of radius R subject to an external oil flow in a
microchannel that contains a cylindrical anchor of diameter d and of depth e: (a) side view
and (b) top view. The microchannel has a height h, a length [, and a width w. The continuous

phase oil is injected from the left inlet at a flow rate that is a constant in each case.

angle 6. Here, we will examine the influence of C'a and b on the droplet migration
for a constant R, which is fixed at 4.

Since the phase-field calculation resolves the interface structure, it is com-
putationally too costly for a 3D simulation to resolve a typical 1 nm oil-water
interface of a microfluidic droplet which is moving slowly. Therefore, 3D phase-
field calculation will have to artificially enlarge the interface thickness to sim-
ulate droplet behavior. Since the grid resolution may significantly affect the
simulation results of the phase-field model, it is important to minimize the nu-
merical error introduced by the grid resolution. We first examine the influence

of grid resolution on the numerical results by conducting the simulations with
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Table 1: The LBM simulation parameters for the grid resolutions of h = 20 and h = 40

lattices.

LBM simulation parameters | p n M 13 o
h =20 1 0.02 0.08 1.5 0.025
h =40 1 0.04 0.16 3.0 0.05

Grid resolution

the channel heights h = 20, 40 and 80. It is found that the simulation with
h = 80 is extremely costly to run, far beyond the computing capacity currently
available to us. To mitigate this issue, a grid refinement scheme such as the
adaptive local grid refinement will be beneficial which can minimize the overall
grid number while achieve high accuracy at the interface. Fig.2 shows the sim-
ulation results for the channel height of h = 20 (each grid size corresponds to
2 pm) and h = 40 lattices (each grid size corresponds to 1 ym) at Ca = 3x 1074,
b= 1.8, and § = 160°. To correspond the same physical parameters when the
grid resolution is increased from h = 20 to h = 40, the LBM simulation pa-
rameters, e.g. the density p, viscosity n, mobility M, interface thickness &,
and the interfacial tension o need to be varied, which are shown in Table 1
for comparison. To match these LBM simulation parameters to their physical
values, one needs to choose three reference quantities: a length scale Ly, a time
scale Ty, and a mass scale My. The values of these reference quantities are
Lo=2x10"%m, Ty =107 s, My = 8 x 10715 kg on the coarse grid (h = 20),
and Lo =1 x10%m, Ty =5 x 1078 s, My = 1 x 107'° kg on the fine grid
(h = 40). A simulation parameter with dimensions [m]™! [s]"*?[kg]™? is multiplied
by [Lo]™ [To]™?[Mo]™ to obtain the physical value. Following this criterion, for
example, on the coarse grid, we can obtain the physical value of the density pP"¥
8§x10~1°

by: pPhv = p% = Gx10707F = 103 kg/m?, the physical value of the interfacial
0

tension o™ by: oPh = U% = 0.025%&79;;; = 0.02 N/m, and the physical
0

. . -15 B
value of the viscosity n?"¥ by: nP'v = nLAO/[}O = 0.02% =8x 1074

Pa-s. As illustrated in Fig.2, the grid resolutions with h = 20 and h = 40

lattices produce almost the same droplet profiles in the final state, which are

12



represented by green dashed lines and blue dash-dot-dot lines, respectively.

In a recent work, Dangla et al. [18] derived a theoretical expression, based on
the force balance, for predicting the equilibrium shape of the anchored droplet,
ie.

() R ,
7= 15.30(1? (1 —psing), (28)

where ¢ is the azimuth angle measured counter-clockwise from the positive z-
axis in the xy plane, and dr(p) is the local deviation from the droplet radius
R. Note that Eq.(28) is valid only when b < 2 and dr/R < 1. The predicted
deformations were found to agree well with the experimental measurements
over a broad range of flow conditions [18], and thus Eq.(28) can be used to
assess accuracy of the numerical simulations. Fig.2 also presents a comparison
between the simulated equilibrium droplet shapes obtained with h = 20 and
40 lattices and the predicted result from Eq.(28) (represented by red solid line)
for Ca = 3 x 1074, b = 1.8, and # = 160°. To quantify the accuracy of
the numerical results, we define two relative errors: E, = W x 100% and
E, = W % 100%, where L, and L, are the simulated droplet lengths in z-
direction and y-direction respectively, and L, , and L, , are their corresponding
predicted values from Eq.(28). We find that E, = 1.53% and E, = 0.85% on
the coarse grid (h = 20), close to E, = 1.07% and E, = 0.58% on the fine grid
(h = 40). This suggests that the grid resolution with A = 20 lattices can provide
acceptable numerical accuracy. Thus, the grid resolution with h = 20 lattices
will be used in the subsequent simulations.

The influence of Ca is then investigated for b = 1.8 and # = 160°. Different
values of Ca are achieved by varying Q. solely. As observed by Dangla et
al. [18], the droplet motion undergoes two states, depending on the value of Ca.
For Ca < 3 x 10~% (the corresponding Reynolds number Re = pQ./(wn) <
0.375), the droplet progresses towards the outlet due to the hydrodynamic drag
force from the outer oil flow, and eventually remains anchored to the hole (see
Fig.3). The final stationary state of the droplet is a result of the force balance

—

between the force due to surface energy gradient (F,) and the pressure drag
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Figure 2: The equilibrium droplet shapes obtained with the grid resolutions of h = 20 lattices
(represented by green dashed lines) and h = 40 lattices (represented by blue dash-dot-dot
lines), and their comparison with the predicted result from Eq.(28) (represented by red solid
line) for Ca =3 x 1074, b = 1.8, and = 160°. The z and y coordinates are both normalized

by the channel height h. The location of the hole is indicated by the pink solid lines.
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Figure 3: The final shape and position of the droplet for Ca = 3x10~4, b = 1.8, and 6 = 160°.

force (Fy) [18]. When the capillary number is increased to 5 x 10~* (which
corresponds to Re = 0.625), the droplet continuously moves towards the outlet
and cannot be completely anchored by the surface energy gradient due to the
dominant ﬁd. Fig.4 shows the comparison of velocity vectors near the rear of the
droplet between Ca = 3 x 1074 and C'a = 5 x 10~* when the rear of the droplet
moves into the hole. We can clearly see that the velocity vectors are negligibly
small (which are non-zero because of unphysical spurious currents arising from
the model itself) inside the droplet for Ca = 3 x 1074, suggesting that the
droplet has reached the static state. However, the magnitude of velocity vectors
can be comparable to the characteristic flow velocity U, for Ca = 5 x 1074
Therefore, it is not surprising that the droplet keeps migrating towards the
outlet and eventually moves out of the domain. While passing through the
anchor in the present geometry (b = 1.8), the droplet only partially enters into
the hole and forms a spherical cap, regardless of Ca. This is consistent with the
theoretical model and experimental observations by Dangla et al. [18], in which
the parameter b is limited to the case of b < 2. In addition, we interestingly
notice that the rear of the droplet does not strictly touch the junction between

the anchor and the top wall of the microchannel when the droplet is trapped
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(b)

Figure 4: Velocity vectors near the rear of the droplet for (a) Ca = 3 x 10~% and (b) Ca =
5 x 10~% when the rear of the droplet moves into the hole. The reference vector 5 x 10~ is

shown in blue above the microchannel.

(see Fig.4(a)). It is worthwhile to remark that, in the derivation of Eq.(28),
Dangla et al. [18] estimated the surface area of the anchored droplet by assuming
the curvature equilibrium between the spherical cap in the hole and the far-
away interface, which implies that the rear of the anchored droplet touches the
junction, distinct from the present numerical result. The difference might be
explained as follows. Physically, there exists small gap between the rear of
the anchored droplet and the junction, but the gap is artificially enlarged in
our simulations because of the diffuse interface model used, where the interface
thickness is artificially enlarged from 1nm to several microns. When the actual
gap is likely to be on the order of tens or hundreds of nms, it could not be
observed in the experiments of Dangla et al. [18], so the assumption of the
curvature equilibrium is acceptable. On the other hand, although our numerical
simulations artificially enlarge the gap between the rear of the droplet and the
junction, this enlargement is found not to affect much the overall accuracy of

the numerical results, as demonstrated by the comparison shown in Fig.2.
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Figure 5: Snapshots of droplet shape and position for (a) b = 1.5, (b) b = 1.8, (¢) b = 2.2,
and (d) b= 2.8 at Ca = 3 x 1074 and § = 160°. For each b, the left snapshot corresponds
to an instant of the droplet body passing through the hole and the right one to the instant of
vt = 24.75.
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Finally, the influence of b is investigated for Ca = 3 x 10~ and 6 = 160°.
Four different values of b are used in the simulations, i.e., b = 1.5, 1.8, 2.2,
and 2.8, which are obtained by adjusting the hole diameter while keeping other
parameters fixed. Obviously, the used values of b are beyond the limit of b < 2,
thus providing a complement to the study of Dangla et al. [18]. Fig.5 shows
the snapshots of droplet shape and position for (a) b = 1.5, (b) b = 1.8, (c)
b =22, and (d) b = 2.8. For each b, two snapshots are shown, with the left one
corresponding to an instant of the droplet body (all parts except the front and
rear) passing through the anchor and the right one to the instant of vt = 24.75,
where 7 is the shear rate and defined by v = U../h. It can be observed that b can
strongly affect the shape of droplet and its motion. As b increases, the amount
and height of water droplet that penetrates into the hole increases, resulting
in an increase in the anchoring force induced by the surface energy gradients.
Thus, the droplet motion undergoes the transition from an unanchored state
to an anchored state with increasing b (see the right snapshots in Fig.5). For
b > 2, the spherical cap upwardly abuts against the top wall in the hole (i.e., the
droplet height reaches its maximal value), and some continuous phase oil still
remains trapped in the hole, which is distinct from the expectation of Dangla
et al. [18] that the droplet will fully enter the hole if b > 2 (note that this
expectation is not demonstrated experimentally). Since the droplet interface is
confined by the top wall of the hole, it is believed that the hole depth e is an
additional important parameter influencing the anchoring behavior of a droplet
in the case of b > 2. When the droplet is eventually anchored, we again observe
that its rear interface does not strictly touch the junction for not only b < 2 but
also b > 2.

To know how the anchor affects the droplet motion, Fig.6 plots the z-
coordinate of droplet centroid (z4) as a function of 4t for various b at Ca =
3 x 107% and 6 = 160°, in which x4 is normalized by the channel height h and

is calculated by

- fv(¢>0) zdV _ fo(_’ t)N (¢(
t

:Ed(t) - fv(¢>0) dv Zi‘N ((b(fa
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Figure 6: z-coordinate of droplet centroid (z4) as a function of ¢ for various b. x4 is normal-
ized by the channel height A. The pink symbols and lines represent the numerical results for
Ca =4 x10"%* and 6 = 150° in a longer computational domain, while all the others are the

results for Ca =3 x 10~% and 6 = 160°.

with the function N(¢) defined by

N =4 b >0 (30)
0, (¢p<0).

By differentiating x4 with respect to time, we obtain that, the droplet initially
migrates in the channel at a constant velocity for all the values of b. When the
droplet penetrates into the hole, x4 increases in a faster fashion. The increase is
more significant for a larger b, because a lager b enables more water to penetrate
into the hole. As the droplet front moves out of the hole, the droplet migrates
again at a constant velocity, although a small portion remains in the hole.
The migration velocity is very close to the one when the droplet is far away
from the hole (without anchoring force). This suggests that the effect of the
anchoring forces can be negligible during the period that the droplet body passes

through the hole because the anchoring forces from the surrounding walls of hole
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cancel out due to symmetry. Once the rear of the droplet enters the hole, the
symmetry is broken, so the droplet quickly slows down and finally rests with its
rear situated at a small gap from the junction for b > 1.8. This could explain
why the anchored interface is always the rear of the droplet rather than other
parts, as observed in the previous experiments [18]. For the smallest b, i.e.,
b = 1.5, we recorded the simulation results every 110, 000 time steps, and found
that some of the droplet has moved out of the computational domain if we keep
recording the simulation results after vt = 22.69, which corresponds to the last
red square in Fig.6. Once the droplet moves out of the computational domain,
we cannot calculate x4 correctly. Hence, the simulation results of b = 1.5 are
only displayed until ¢ = 22.69 in Fig.6. To reproduce a complete picture
of droplet motion in an unanchored state, the channel length is increased to
[ = 1150 pm, and the droplet center is changed to xg = 320 and yo = 250 pm.
The simulation is run with b = 1.8, Ca = 4 x 107* and § = 150°, and the
obtained results are also plotted in Fig.6 (see the pink symbols and lines). As
observed in the anchored state, the droplet also undergoes a slow-down process
due to the anchoring forces when its rear passes through the hole. However, the
anchoring forces are not large enough to pin the droplet completely. Based on
these observations, we can conclude that the anchoring forces block the droplet
motion only when the droplet rear passes through the hole. Finally, when the
droplet is anchored for b > 1.8, as shown in Fig.6, the rest position is dependent
on b: increasing b leads to a decrease in x4, which is attributed to the increased

volume of the droplet residing in the hole.

4. Conclusions

A three-dimensional phase-field LBM is used to simulate the dynamical be-
havior of a confined droplet subject to an outer viscous flow in a microchannel
that contains a cylindrical hole etched into the top surface. The influence of
capillary number and hole diameter, which is expressed as the ratio of hole di-

ameter to channel height (b), is investigated. We demonstrate numerically that
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the surface energy gradient induced by the hole can produce an anchoring force
to resist the hydrodynamic drag from the outer flow, resulting in the droplet
anchored to the hole when the capillary number is below a critical value. When
b increases from 1.5 to 2.8 the droplet motion undergoes the transition from an
unanchored state to an anchored state. For b < 2, the droplet partially enters
into the hole and forms a spherical cap; whereas for b > 2, more droplet pene-
trates into the hole, and the spherical cap abuts upwardly against the top wall
of the hole, which makes the hole depth into a crucial parameter. These obser-
vations are consistent with the previously reported experiments. However, the
droplet does not fully enter the hole for b > 2, different from the expectation
of Dangla et al. [18]. Also, we notice that the rear of the droplet rests at a
small distance away from the junction for any b in the anchored state. Finally,
regardless of b, the droplet always undergoes a slow-down process when its rear

passes through the hole.
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