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Abstract: An extension of the upper bound shakedown theorem to load histories in excess of 

shakedown has been applied recently to the evaluation of a ratchet limit and the varying plastic 

strain magnitudes associated with a varying residual stress field. Solutions were obtained by the 

Linear Matching Method. In the present paper, this technique is extended to the evaluation of 

creep-reverse plasticity mechanism for bodies subjected to thermal cyclic loading including creep 

effects. The accumulated creep strain, the varying flow stress and the corresponding varying 

residual stress field during a creep dwell time are evaluated as well as the elastic follow-up factor.  

Three alternative computational strategies are discussed with differing but related assumptions. 

The problem of a plate with a central circular hole is discussed, subjected to cyclic thermal load. 

All three methods provide similar values for the elastic follow-up factor, indicating that the result 

is insensitive to the range of assumptions made. The simplest method, Method 1, is suggested as 

the basis of a general purpose method for use in life assessment. 
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NOTATION 

Z  elastic follow-up factor 
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EE,   Young�s modulus and effective modulus for uni-axial and multi-axial conditions 

εσ ,   stress and strain 

dtt, , τ  times 

21 , tt , tΔ  time instances and creep dwell time 

pεΔ  , cεΔ  plastic strain range and accumulated creep strain 

cp ρρ ΔΔ ,  varying residual stress associated with reverse plasticity mechanism and creep 

relaxation 

rp

ijεΔ   total varying strain 

Dc, N0  creep endurance limit and cycles to failure 

ijσ�   applied linear elastic stress field  

ijρ , )(tijρ  constant and changing residual stress field 

μ , K  Linear elastic shear modulus and modulus of compression 

pr

iuΔ    displacement increment 

cσ , c

ijεΔ  creep stress and creep strain 

0σ , 0ε& , n creep materials data   

c

ijε&   creep strain rate 

θθθ Δ,, 0
 temperatures 

E, S, P, R elastic, shakedown, reverse plasticity and ratchetting region 

εσ &,   von Mises effective stress and strain rate 

in

ijσ   initial stress field for creep computation 

D, L  diameter of the hole and length of the plate 

0tσ   maximum von Mises effective elastic thermal stress  

νσ ,Y
 yield stress and Poison�s ratio  

a, r radius of the hole and distance to the centre of hole 
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1. Introduction 

The processes of engineering design and life assessment of structures subjected to cyclic 

loading require the evaluation of load histories for which certain types of material failure occur 

(Ainsworth, 2003; Ainsworth and Budden, 1992). The prediction of these failure mechanisms of 

structures with variable repeated loading is significant and has attracted the attentions of many 

researchers (Chen and Ponter, 2001a, 2001b; Chen et al., 1999, 2003; Engelhardt, 1999; Ponter 

and Chen, 2001; Maier, 1977; Corradi and Zavelani, 1974; Hachemi and Weichert, 1998; 

Mackenzie et al., 1996; Seshadri and Mangalaramanan, 1998; Boyle et al., 1997) generally using 

programming methods.  

One of the most successful of such methods, the Linear Matching Method (LMM) (Chen and 

Ponter, 2001a, 2001b; Chen et al., 2003; Engelhardt, 1999; Ponter and Chen, 2001) has been 

applied with considerable rigor to cyclic loading problems where the residual stress field remains 

constant. This includes the evaluation of classical limit loads, shakedown limits, creep ruptures 

and rapid cycle creep solutions (Chen and Ponter, 2001a; Chen et al., 2003; Engelhardt, 1999).  

The LM method has also been extended to cases where the residual stress field changes during a 

cyclic state. This includes the assessment of the plastic strain amplitude and ratchet limit 

associated with reverse plasticity mechanisms (Chen and Ponter, 2001b; Ponter and Chen, 2001) 

when the load history is in excess of shakedown but less than a ratchet limit. In these 

circumstances there are two properties required in low temperature design and life assessment. 

The amplitude of plastic strain provides information concerning fatigue crack initiation in low 

cycle fatigue and the capacity of the body to withstand additional constant mechanical load 

indicates the proximity to a ratchet limit. In (Ponter and Chen, 2001; Chen and Ponter, 2001b) a 

programming method, the Linear Matching Method has been used to characterise both the strain 
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amplitude and the proximity to a ratchet limit, based upon a new minimum theorem (Ponter and 

Chen, 2001). 

In practice, components can operate at high temperature within the creep range both within 

shakedown and for load ranges in excess of shakedown. Typically, in power plant, a creep dwell 

periods exist where the temperature of some proportion of the structure lies within the creep range. 

For some components, e.g. heat exchangers, the mechanical loads can be relatively small but the 

thermal stresses can be significantly in excess of yield. In such circumstances creep strains occur, 

and this results in the relaxation of initially high stresses as creep strains replaces elastic strains. 

Lifetime integrity may then be limited not only by low cycle fatigue but the damaging effects of 

the creep strains produced during creep relaxation. The evaluation of the creep relaxation, the 

determination of the accumulated creep strain, the varying flow stress and the corresponding 

elastic follow-up factors during dwell period are very important components of life assessment 

methods. The work of this paper is part of a general study of the application of the Linear 

Matching Method to the various stages of Life Assessment methods, using R5 (Ainsworth, 2003; 

Ainsworth and Budden, 1992) as the beginning point. It is anticipated that such methods may then 

replace the rule-based methods currently used, providing more accurate and less conservative 

predictions. 

The term �elastic follow-up� has been used to describe the effects of creep strains in local 

regions where the total strain increases through interaction with the overall elastic compliance of 

the structure (Ainsworth, 2003). The concept was introduced to allow the local accumulation of 

creep strain to be estimated without the need to performing full time-dependent structural analysis. 

The process may be described for a uniaxial state of stress by an equation of the form: 

0=+
dt

d

E

Z

dt

d c σε
     (1) 
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where Z is the elastic follow-up factor, E is Young�s modulus, cε  is the creep strain accumulated 

during the dwell,  and σ  is the applied stress. The factor Z characterises the stress-strain path 

followed during stress relaxation.  For example, 1=Z  corresponds to relaxation at a constant 

total strain and ∞→Z  corresponds to creep at a constant stress. Although equation (1) is an 

approximation, in detailed calculations of relaxation, Z is found to be relatively constant in time. 

For a restricted class of problems, where the stress relaxes proportionally throughout the 

structure, an analytic solution for Z may be computed. All of the known solutions are of this type 

(Hubel and Zeibig, 1996). In Appendix 1 we give a general derivation of this result and apply the 

result to three simple examples where creep occurs throughout the structure or, alternatively, in 

only part of the structure. These solutions demonstrate that the variation of Z values between 

otherwise similar structures can be significant. Accurate assessments of Z and creep accumulation 

may only be achieved through an accurate description of the initial stress and the variation of the 

creep rate throughout the structure during the dwell period. 

The primary objective of this paper is to investigate the possibility of extending the reverse 

plasticity method of (Ponter and Chen, 2001; Chen and Ponter, 2001b) to allow for creep 

relaxation during a dwell period, giving a composite method that yields the plastic strain 

amplitude, cyclic strain due to creep and an estimate of Z. In this way all the significant features 

of the structural problem may be included without the need of a full step-by-step analysis. In fact 

we describe three alternative methods, Methods 1 to 3, based on related but differing assumptions. 

We find that that they all produce virtually identical values of Z, implying that its value is not 

particularly sensitive to the range of assumptions. This suggests that method 1, the 

computationally most efficient, may well form the basis for an efficient computational technique 

for use in life assessment techniques. 
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2. Elastic Follow-up factor Z for Proportional Relaxation 

For certain simple problems the stress relaxes according to the simple equation 

)()( 0
tft ijij σσ =  (2) 

where 0

ijσ  is the stress at time t=0. In this case Z may be evaluated explicitly; 

c
D

U
Z ~

~
2

&
=  (3) 

 

where U
~

 is the total elastic strain energy and c
D
~
&  is the total creep energy dissipation rate, both 

evaluated for 0

ijσ . Each quantity is normalised with respect to the stress at the location where Z is 

required, usually the position of maximum von Mises effective stress. The derivation of this result 

is given in Appendix 1. A valuable insight into the dependence of Z on the characteristics of the 

problem is also provided. 

Using these formulations in Appendix 1, we can evaluate Z for simple beam structures. Table 

1 lists the variation of Z for two simple beam structures with creep index n. The detailed analysis 

is given in Appendix 2. Generally Z increases with n but there are significant differences in 

behaviour. For a typical value of n=5, Z has values across the range 47.43.1 ≤≤ Z . From these 

results we observe that an accurate assessment of Z is only possible if the initial stress is modelled 

effectively and the variation of the creep rate throughout the structure is properly modelled. The 

methods described in the next section are designed to achieve these ends. 

 

3. Definition of the problem 

In order to simplify the problem, the following assumptions are made; there are only two 

distinct extremes to the elastic solution, at times =t t1 and t2, a von Mises yield condition applies 
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and the elastic behaviour is isotropic. A schematic of a typical load history is shown in Fig.1. The 

structure is subjected to high temperature into the creep range, beginning at time 1t  followed by a 

dwell period tΔ  and then a return to low temperatures at times t2. Hence creep relaxation occurs 

in the body during dwell period tΔ  and reverse plasticity appears in the body at times 1t and 2t . 

This paper discusses two kinds of creep-reverse plasticity mechanisms for the cyclic loads shown 

in Fig. 1. Fig. 2a shows, schematically, the case where the load range exceeds the reverse 

plasticity limit, and the plastic strain increment p

ijεΔ  as well as the associated residual stress 

range p

ijρΔ  occurs at both extremes of the load cycle. This is determined before the evaluation of 

the accumulated creep strain c

ijεΔ  and the corresponding residual stress c

ijρΔ  for creep relaxation. 

The total varying strain rp

ijεΔ  is the summation of p

ijεΔ  and c

ijεΔ . Fig. 2b shows the case where the 

load variation is below the elastic shakedown limit, i.e. 0,0 =Δ=Δ p

ij

p

ij ρε , and the total varying 

strain c

ij

rp

ij εε Δ=Δ  in the steady state. In order to understand the difference between pure reverse 

plasticity mechanism (Ponter and Chen, 2001; Chen and Ponter, 2001b) and creep-reverse 

plasticity mechanism proposed in this paper, Fig. 3 presents a schematic representation of the 

plastic and creep quantities in the above two mechanisms in biaxial stress space. For the pure 

reverse plasticity mechanism (Fig.3a), there are two plastic strain increments associated with two 

load extremes. For the creep-reverse plasticity mechanism (Fig.3b), the strain increment during 

loading cycle is split into two increments, i.e. the plastic strain increment and the creep strain 

increment. Note that the accumulated creep strain c

ijεΔ  is shown as associated with a flow stress 

surface =σ constant, and the plastic strains p

ijεΔ  are associated with the yield surface yσσ = . 

This corresponds to the simplest of the methods, described in the next section. 
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 Fig. 4 gives a flow chart for the creep-reverse plasticity solution method. The first step in all 

three methods is to perform a reverse plasticity solution method (Ponter and Chen, 2001; Chen 

and Ponter, 2001b) and calculate the varying plastic strain p

ijεΔ  and the varying residual 

stress p

ijρΔ . This step can be ignored (Fig. 2b) when the applied load domain is below the elastic 

shakedown limit. The second step is to perform a creep-reverse plasticity solution method, where 

the initial elastic stress amplitude has been amended by the varying residual stress p

ijρΔ  

associated with pure reverse plasticity mechanism. This results in an additional change in residual 

stress c

ijρΔ  during the creep dwell tΔ  and an accumulated magnitude of creep strain c

ijεΔ . The 

details of how this may be done will be presented in the next several sections. In the context of 

the life assessment method R5, once c

ijεΔ  and the corresponding residual stress c

ijρΔ  are 

determined, the elastic follow-up factor Z, the creep endurance limit Dc, the number of cycles to 

failure N0 induced by low cycle fatigue mechanism can be evaluated and the total damage 

parameter then be determined thereafter. 

 

4. The numerical procedure for the varying residual stress field associated with a reverse 

plasticity mechanism 

In (Ponter and Chen, 2001; Chen and Ponter, 2001b), we considered the case when the elastic 

solution varies, proportionally between two extreme values )(�
1tijσ  and )(�

2tijσ  and describes a 

straight line path in stress space.  The complete steady state solution has a stress history of the 

general form 

  ijijijij ttt ρρσσ ++= )()(�)(   (4) 
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 where ijρ  is a time constant residual stress field corresponding to the residual stress at the 

beginning of the cycle, and )(tijρ  is the change of residual stress during the cycle, i.e. 

0)()0( =Δ= tijij ρρ . Within the reverse plasticity regime, the accumulated plastic strain over a 

cycle is zero and, where plastic yielding occurs, the accumulation of strain consisted of two 

increments p

ijεΔ  and p

ijεΔ− , 

 p

ij

t

p

ij dt εε Δ=∫
1

0

&   and  p

ij

t

t

p

ij dt εε Δ−=∫
2

1

&   (5a) 

 The development of these plastic strains results in a change in, )(tijρ , 

  p

ij

t

ijdt ρρ Δ=∫
1

0

  and  p

ij

t

ijdt ρρ Δ−=∫
1

0

 (5b) 

These increments are related through the elastic properties of the structure. The solution is 

completed by introducing the simplifying assumption that the total stresses at times 1t   and 2t , 

ijijijij tt ρρσσ +Δ+= )(�)( 11   (6a) 

ijijijij tt ρρσσ +Δ−= )(�)( 22    (6b) 

each lies upon the yield surface corresponding to the plastic strains p

ijεΔ  and p

ijεΔ− . Comparisons 

with full step-by-step solutions (Chen and Ponter, 2001b) indicate that the error associated with 

this assumption is generally small. 

   In (Ponter and Chen, 2001; Chen and Ponter, 2001b) the problem is posed as a minimisation 

problem, derived from a general minimum theorem given in (Ponter and Chen, 2001), solved 

using the Linear Matching Method where a sequence of linear problems converges to the exact 

solution. The details are given in (Ponter and Chen, 2001; Chen and Ponter, 2001b) and a 

summary of the resulting algorithm is given below. 
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  In a typical iteration we begin with an estimate of the plastic strain increment i

ij

p

ij εε Δ=Δ  (the 

solution from the previous iteration) and define the following linear problem for a new estimate 

f

ij

p

ij εε Δ=Δ . A linear coefficient iμ  is defined by 

 )(2
2

3
2

ic

ij

i

y εεμσ Δ⎟
⎠
⎞

⎜
⎝
⎛=   (7) 

A new distribution f

ijεΔ and corresponding f

ijρΔ  are defined as the solution of the following 

linear problem; 

′
Δ+

′
Δ=

′
Δ f

ij

f

ij

Tf

ij ερ
μ

ε
2

1
  (8) 

f

kk

Tf

kk
K

ρε Δ=Δ
3

1
  (9) 

and ⎟
⎠
⎞

⎜
⎝
⎛ ′

Δ+′Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

′
Δ cf

ijiji

f

ij ρσ
μ

ε �
2

1
  (10) 

where  Tf

ijεΔ  satisfies conditions of compatibility, f

ijρΔ  satisfies equilibrium conditions and  

)(�)(��
21 tt ijijij σσσ −=Δ   (11) 

Note that ijσ ′Δ � denotes the deviatoric component of ijσ�Δ , etc. 

Repeated application of this iterative algorithm provides a sequence of solutions k

ijεΔ , which 

converges to the solution that minimises the functional I  defined in (Ponter and Chen, 2001; 

Chen and Ponter, 2001b). If we consider two consecutive iterations, k and (k+1), the relationship 

(7) may be written as; 

( )k

ijij

ykk

ρσσ
σ

μμ
Δ+Δ

=+

�

2
1   (12) 
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The details of the procedure, as implemented in the commercial finite element code ABAQUS, is 

given in the appendix of (Chen and Ponter, 2001b). The process is initiated by choosing 

=1μ constant. 

Upon convergence when i

ij

f

ij εε Δ=Δ  and i

ij

f

ij ρρ Δ=Δ , it follows from (7) and (10) that  

y

f

ijij σρσσ 2)�( =Δ+Δ   (13) 

i.e. the total stress change in stress lies within the yield surface for a suitable ijρ . 

There are two properties of this simple solution method that are worthy of note. The solution 

is entirely concerned with the change in stress over the cycle and is independent of the constant 

residual stress ijρ  and any component of the linear elastic solution ijσ�  that remains constant 

during the cycle.  

 The second property is that the yield stress values at 1t  and 2t  need not be identical. If 1

yσ  

and 2

yσ  are the yield values so associated, the method outlined above remains unchanged except 

that equation (7) is replaced by  

)(2
2

321 i

ij

i

yy εεμσσ Δ⎟
⎠
⎞

⎜
⎝
⎛=+   (7A) 

and, at convergence, 

21)�( yy

f

ijij σσρσσ +=Δ+Δ   (13A) 

 

5. Creep Relaxation 

Now consider the history of load and temperature shown in Figure 1. During the time interval 

tttt Δ+≤≤ 11 , where 1tt −=τ , relaxation of stress takes place so that c

ij

c

ijij ρσσ Δ−=)0(  and 



 12

c

ijij t σσ =Δ )( . A creep strain c

ijεΔ  occurs, related to the relaxation of stress c

ijρΔ  by the equations 

(8) and (9), i.e. 

c

ij

c

ij

Tc

ij ερ
μ

ε Δ+
′

Δ=
′

Δ
2

1
  (14) 

c

kk

Tc

kk
K

ρε Δ=Δ
3

1
  (15) 

In the following we describe a method of relating c

ijij t σσ =Δ )( , c

ijρΔ  and c

ijεΔ  by integration 

along the relaxation path. With this relationship we then interpret c

ijεΔ  as associated with 

c

ijij t σσ =Δ )(  and arrive at a calculation that is equivalent to the reverse plasticity calculation 

described above, except that the yield value corresponding to ttt Δ+= 1 , cc

ij σσσ =)(  is an 

implicit function of c

ijεΔ  and c

ijρΔ .  

 

6. Integration of the Relaxation Process 

In conformity with the plasticity solution we assume a kinematically constrained solution 

where the creep strain rate during tttt Δ+≤≤ 11  remains in a constant tensorial direction, i.e. 

ij

cc

ij nεε && =  where ijn  is a constant tensor. The constitutive relation is assumed to be Norton�s law, 

ij

n

n

c

ij σσ
σ
εε ′= −1

0

0

2

3 &
& ,   i.e.    n

n

c σ
σ
εε

0

0
&

& =     (16) 

where n is the creep index of the material, 0ε&  is the uniaxial  steady state creep rate corresponding 

to temperature θ  and uniaxial stress 0σ . Hence ijσ ′  describes a radial path in deviatoric stress 

space and )()( ijij σσσσ && = . σ  denotes the von Mises effective stress and ε&  the von Mises 
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effective strain. During the relaxation process we assume, at each point in space, that an elastic 

follow-up factor Z exists, i.e. for uni-axial conditions   

  σε &&
E

Zc −=    and   σε &&
E

Zc −=  (17) 

for multi-axial conditions where  
)1(2

3

v

E
E

+
= . 

Combining (16) and (17) and integrating over the relaxation period, we obtain 

                 
⎭
⎬
⎫

⎩
⎨
⎧

Δ+
−

−
=−=Δ −−

Δ

∫ 110
0

0

)(

1

)(

1

1

1
nccncnn

n

d
t

Z

E c

ρσσσ
σ

σ
ε ρ&

  (18) 

where )( c

ij

c ρσρ Δ=Δ .  Integrating (17) gives  

 ccc

ij
E

Z ρεεε Δ=Δ=Δ )(  (19) 

Combining (18) and (19) and eliminating EZ /  provides an implicit relationship between the 

effective values cσ , cρΔ  and cεΔ . Computationally it is advantageous to be able to compute cσ  

at each iteration in terms of a fictional rate Fε& ,  

 
nF

c

1

0

0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ε
εσσ
&

&
 (20) 

Combining(18), (19) and (20) gives, 

      
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

Δ+
−

−ΔΔ
Δ

=Δ
Δ
Δ

= −− 11 )(

1

)(

1

1

1)(
),,(

nccncc

ncc
c

f

c
F

nt
nf

t ρσσρ
σερσεε&  (21) 

Hence in the iterative process we begin with current estimates ciσ , ciρΔ and ciεΔ  and compute a 

new value of the creep stress cfc σσ =  from (20) where 

),,( nf
t

cici
ci

F ρσεε Δ
Δ
Δ

=&  (22A) 
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Note that in the limit when cc σρ /Δ  is small, 1→f  and  

tcF ΔΔ= /εε&  (22B) 

with an error of the order of 2)/( cc σρΔ .  

On the basis of this calculation we develop two alternative solution schemes. 

 

Method 1: The solution scheme consists of two parts as illustrated in Figure (3B). Initially 

creep relaxation is ignored and the amplitude of plastic strain p

ijεΔ  is evaluated by the methods of 

(Ponter and Chen, 2001; Chen and Ponter, 2001b) as described above. The solution method is 

then repeated with the yield stress at time tΔ=τ  being taken as cσ  using the iterative scheme 

(20) and (22A). A linear coefficient iμ  is defined by 

)(2
2

3 ic

ij

i

cy εεμσσ Δ⎟
⎠
⎞

⎜
⎝
⎛=+  (7B) 

where cσ is evaluate from (20) and (21) using values from the previous iteration. The same 

procedure as in equations (8) to (10) is used except that (11) becomes 

 p

ijijijij tt ρσσσ Δ+−=Δ )(�)(��
21  (23)  

where p

ijρΔ  is the residual stress change due to the plastic strain. The converged solution then has 

the property  

cy

f

ijij σσρσσ +=Δ+Δ )�(  (24) 

i.e.   cy

c

ij

p

ijijij tt σσρρσσσ +=Δ+Δ+− ))(�)(�( 21  

thereby producing a consistent solution. 
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Method 2: In this solution scheme, we adopt the simpler approximation of equation (22B). The 

creep dwell time tΔ  is divide it into m increments, i.e. 
mtttt Δ++Δ+Δ=Δ L21 , where itΔ  is a 

short time period. and, for each increment 

i

i

c

i

c

i

F

t

tttttt
ttt

Δ
Δ++Δ+ΔΔ−Δ++Δ+ΔΔ

≈Δ++Δ+Δ − )()(
)( 12121

21

LL
L&

εε
ε  (25) 

Hence in the step 1, we calculate the accumulated creep strain )( 1t
c ΔΔε  using equation (22B) 

directly. In the step i, the equation (25) is used to evaluate the accumulated creep strain 

)( 21 i

c ttt Δ++Δ+ΔΔ Lε  based on the solution of )( 121 −Δ++Δ+ΔΔ i

c ttt Lε  calculated by step (i-

1). 

In this calculation the value of Z may change from increment to increment, in contrast to 

Method 1 where Z is assumed to remain constant in time. 

Methods 1 and 2 assume no overall accumulation of strain due to creep. The following 

method relaxes this condition and is useful for comparative purposes.  

 

Method 3 - Creep computation based upon the rapid cycle solutions 

Although it is possible to construct complete cycle solutions in particular cases (Boulbibane 

and Ponter, 2002) the computational effort is significantly greater than the methods described 

above. There is however a particular case when a complete cyclic solution is easily constructed 

using the LMM, in the special case when ijρ  in equation (4) is zero; this occurs for creep 

problems when the cycle time is very short compared with material times, the so called rapid 

cycle solution (Ponter and Cocks, 1994; Ponter and Engelhardt, 2000). In the following we 

construct the rapid cycle solution based upon the elastic solution and the reverse plasticity 

solution, producing a solution of the form, 
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ij

p

ijij

in

ij tt ρρσσ +Δ+= )()(�  (26) 

where p

ijρΔ  is the varying residual stress field associated with the pure reverse plasticity 

mechanism (Ponter and Chen, 2001; Chen and Ponter, 2001b), and ijρ  is the constant residual 

stress associated with the rapid cycle solution for creep. The estimate of Z and the creep 

relaxation strain then obtained by carrying out a step by step solution for the initial value problem 

′
+′=

′ c

ijij

cT

ij ερ
μ

ε &&&
2

1
,  kk

cT

kk
K
ρε &&

3

1
=  (27) 

and the creep strain rate is given by Norton�s law. The initial condition for the calculation is taken 

as the rapid cycle solution (26) at 1tt = . This solution is similar in nature to a method 

recommended in R5 although the initial stress state here is a more accurate estimate of the cyclic 

solution. Comparisons with full cyclic solutions (Boulbibane and Ponter, 2002) indicate that the 

method tends to give an over-estimate of Z when compared with the exact cyclic solution.  

For the rapid cycle solution method we adopt the procedure described by (Ponter and 

Engelhardt, 2000) and the details will not be given here. The constitutive equation is assumed to 

be the Bailey Orowan model, which tends to overestimate creep recovery effects.  

 

7. Numerical example:  A  plate with a central hole and subjected to varying thermal loads 

The geometry of the structure and its finite element mesh are shown in Fig.5, posed as a three 

dimensional problem. The 20-node solid isoparametric element with reduced integration is 

adopted. The ratio between the diameter D of the hole and the length L of the plate is 0.2 and the 

ratio of the depth of the plate to the length L of the plate is 0.05.  

The plate is subjected to a temperature difference θΔ  between the edge of the hole and the 

edge of the plate. The variation of the temperature with radius r was assumed to be; 
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)5ln()5ln(0 raθθθ Δ+=  (28) 

which gives a simple approximation to the temperature field corresponding to θθθ Δ+= 0  

around the edge of the hole and 0θθ =  at edge of the plate.  

The elastic stress field and the maximum effective value, 0tσ  , at the edge of the holed plate 

due to the thermal load was calculated by (ABAQUS, 2001), where 00 =θ  , 500=Δθ C
o  and a 

coefficient of thermal expansion of 510−
C
o -1

. The yield stress MPaY 360=σ , and the elastic 

modulus E = 208 GPa and 3.0=ν .  

For the creep material data in equation (16) we adopt 
2

0

yσ
σ =  and n=5, and make two 

alternative assumptions for the uniaxial steady state creep rate 0ε&  as follows:  

6

0 102 −×=ε& /hr   (29A) 

and .
)273(

)19700(
exp53108.5760 ⎥

⎦

⎤
⎢
⎣

⎡
+

−
=

θ
ε& /hr (29B) 

where, in (29A) we assume creep properties independent of temperature and in (29B) the creep 

properties depend on temperature, typical of type 316 stainless steel. 

Figure 6 shows the shakedown and ratchet boundaries for the problem, using the methods 

described in (Ponter and Chen, 2001; Chen and Ponter, 2001b). Note that yt σσ 20 =  is the value 

of tσ  at the reverse plasticity shakedown limit. In this paper we use the perfect plasticity material 

model.  

Two load cases are shown in Table 2. For load case 1, the applied load domain is beyond the 

elastic shakedown region and the reverse plasticity mechanism appears adjacent to the hole.  The 

maximum effective amplitude of plastic strain pεΔ  for this case is 310869.2 −× , and the total 
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varying strain rpεΔ , including creep relaxation is the summation of varying plastic strain pεΔ  

and accumulated creep strain cεΔ . Fig. 7, 8 and 9 present the calculated maximum von Mises 

creep flow stress, the maximum von Mises creep strain and the elastic follow-up factor Z with 

creep dwell time for equation (29A) and (29B), respectively. Although the rate of relaxation and 

the growth of strain differ, the Z values are very similar, Figures 9a and 9b, with lower values for 

the temperature dependent case. Solutions for Method 1 and 2 are coincident, indicating that the 

assumption in Method 1, that Z remains constant during the relaxation process, is acceptable. The 

results from Method 3 also have a good agreement with those from Method 1 and 2.  This 

numerical fact verifies the applicability of the proposed creep-reverse plasticity solution methods 

1 and 2 in the paper as well as the monotonic creep computation method 3 based upon rapid cycle 

creep solutions.   

For load case 2, the applied load domain is in the elastic shakedown region, where 

0,0 =Δ=Δ pp ρε , and the total varying strain rpεΔ  equals to the accumulated creep strain cεΔ  

induced by creep relaxation. Fig.10, 11 and 12 present the computed maximum von Mises creep 

flow stress, the maximum von Mises creep strain and the elastic follow-up factor Z with creep 

dwell time for equation (29A) and equation (29B), respectively. As both the stress levels and 

maximum temperature is much lower in this case, there is a very marked difference in creep strain 

growth between Fig 11a and 11b. However, the values of Z in Fig 12a and 12b are very similar, 

where the time scales in each case correspond to similar degree of stress relaxation, as shown in 

Fig 10a and 10b. For load case 2, the solution for Method 3 tends to give higher values of creep 

flow stress and strain, although, the Z values are close to those of Method 1 and 2. For all 

solutions, Method 1 and 2 give near identical values. This indicates that Method 1, the 

numerically most efficient of the methods, is acceptable.  
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8. Discussions 

Although the solutions for method 1 and 2 are near identical, they differ from those of method 

3 that tends to give higher values of Z, particular in the case of loading below the shakedown limit. 

(Boulbibane and Ponter, 2002) have noted that this method tends to give conservative values of Z 

although for a different constitutive equation and loading history. 

Methods 1 and 2 use different material assumptions to method 3. In method 3 the Bailey-

Orowan model is used for the rapid cycle solution. The Bailey-Orowan model produces a 

different start-of-dwell stress below the shakedown limit, but a value that is very similar to 

Methods 1 and 2 in excess of shakedown where the initial stress needs to satisfy yield in all cases. 

If the applied load domain exceeds elastic shakedown and is in the reverse plasticity region, the 

start-of-dwell stress using rapid cycle solutions by Bailey-Orowan model (method 3) is consistent 

with the initial flow stress by the proposed methods 1 and 2 because in all cases the initial elastic 

stresses associated with the applied cyclic loads were amended by a varying residual stress field 

associated with the reverse plasticity mechanism. Both the maximum start-of-dwell stress and 

initial maximum flow stress equal to the yield stress of the material. Hence for load case 1 in this 

paper, where the applied load domain induces the reverse plasticity mechanism, the creep-reverse 

plasticity solution methods 1 and 2 nearly produce the same results as the monotonic creep 

computation method 3.  

If the applied load domain is below the elastic shakedown limit, the rapid cycle solutions by 

the Bailey-Orowan model (Boulbibane and Ponter, 2002) produces a start-of-dwell stress that 

differs from the initial creep flow stress by methods 1 and 2, which is verified by the numerical 

results for load case 2. The Bailey-Orowan theory gives more conservative estimates of creep 

strains than the proposed creep-reverse plasticity solution methods in the paper.  
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The elastic follow-up factor Z is assumed reasonably to be a constant when the creep relaxation 

is dominated by the thermal stress. The further investigations to the effects of the dominant 

mechanical stress on the creep will be performed in the future paper.   

In order to simplify the formulations, the Norton�s law is adopted in equation (16) of the paper.  

Normally, the adoption of Norton�s law for creep may cause misevaluation of creep damage 

during dwell time due to the neglect of transient creep. In order to overcome this, in the paper, we 

have considered the transient creep by fitting the transient creep data into the Norton�s law, i.e. 

the creep material data in the Norton�s law (29B) have already considered the effect of the 

transient creep, which are different with those for the steady state creep. 

Only two load instances are considered in this paper for method 1 and 2, although in method 3 

multi-load extremes are adopted.  For a general case of arbitrary loading, a more complicated 

method is being developed and will be presented in the future paper.  

 

9. Conclusions 

 The paper presents three simplified methods for evaluating the creep strains produced during a 

creep dwell period using various adaptations of the linear matching method. Methods 1 and 2 are 

derived by adapting an existing (Ponter and Chen, 2001; Chen and Ponter, 2001b) method for the 

evaluation of the plastic strain amplitude where, in method 1 we assume that relaxation takes 

place with a constant elastic follow�up factor and there is no growth of total strain over the cycle. 

Solution 2 retains the zero growth assumption but does not assume a constant value of Z. Method 

3 allows for overall growth of strain and gives a different initial stress to that of Methods 1 and 2. 

Two creep models are used, assuming temperature independent and temperature dependent 

material data. The primary conclusion from the numerical example is that the value of Z hardly 

varies between the three methods and the two creep data, indication that Z is not particularly 
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sensitive to the assumptions made in these particular calculations. The overall implication is that 

the particular assumptions made in Method 1 are probably acceptable for a general purpose 

technique for the evaluation of creep/ fatigue interaction. These methods were devised with the 

needs of the life assessment method R5 particularly in mind, although the approach to 

creep/fatigue interaction is similar in other life assessment procedures. 

The completion of Method 1 involves two stages. The first stage involves the evaluation of 

the plastic strain amplitude, assuming no creep occurs during the dwell period. This involves the 

solution of a sequence of linear problems to convergence. The number of iterations required 

varies with the convergence criterion, but the order of thirty iterations is usually sufficient. If the 

load level is below the shakedown limit this stage becomes unnecessary. Although the solutions 

in this paper assume perfect plasticity, cyclic hardening may be included without any increase in 

the computational effort. The second stage involves a calculation which is computationally 

similar to the first stage and the same effort is required. Hence a complete solution for a particular 

case would require the solution of about sixty linear initial strain problems. 

This study provides a first attempt to produce efficient methods for creep/fatigue interaction 

using the Linear Matching method where the calculation is specific to the circumstance of the 

problem and where reliance is placed on elementary material data rather than a full constitutive 

relationship. There are clearly ways in which these calculations may be developed, for more 

complex histories of loading and where the material data is provided by a constitutive relationship. 

These must await further study. 
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Appendix 1: Elastic Follow-up factor Z for proportional relaxation 

Consider the case when a structure with volume V possesses a residual stress field 0

ijσ  at time 

0=t . For 0>t , creep occurs where the total strain rate ijε&  is given by, 
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where 0ε& denotes the uniaxial creep rate corresponding to an uniaxial stress 0σ  at a temperature 

0T . The creep behaviour is governed by the creep index n  and the creep activation energy Q . 

R denotes the universal gas constant and ),( Kμ  denote the linear elastic shear and bulk moduli, 

assumed temperature independent. Consider a history of stress relaxation for 0>t ,  

)()( 0
tft ijij σσ =  A1.3  

As 0

ijσ  is a residual stress field, 

00 =∫ ij
V

ijεσ &  A1.4 

and hence, from A1.1 and A1.2, 
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where U denotes the total elastic complementary strain energy at 0=t , 
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and C
D& denotes the total creep energy dissipation rate, 
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GdVD ij

n

V n

C )( 01
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Integrating  equation (A1.5)  we obtain, assuming 1>n , 
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With )(tf  known, the elastic follow-up factor may be computed for any position in the structure. 

From A1.3 and A1.1, 
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where oσ  denotes the effective stress at  0=t  and Cε  the effective creep strain accumulated 

since 0=t . The effective Young�s modulus during stress relation is, therefore given by, 
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The maximum value of Z generally occurs in the location where max

00 σσ =  at the position of 

maximum effective stress at 0=t . We will assume that 0TT =  at the same location and adjust 0ε&  

accordingly. From A1.6, A1.7 and A1.8, A1.10 may now be expressed in the following form; 

c
D

U
Z ~

~
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where C
D
~
& and U

~
 are the creep energy dissipation and complementary elastic strain energy 

normalised with respect to the maximum effective stress max

0σ , 
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and 
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Equations A1.11, A1.12 and A1.13, provide valuable insight into the dependence of Z on the 

characteristics of the problem. 

a) Z is independent of the overall magnitude of the stress distribution, i.e. the stress 

distribution 0

ijσ  and 0

ijXσ , where X  is a constant, will give identical values of Z. 

However Z is strongly dependent on the distribution of the stress. 

b) Z is independent of Young�s modulus E , but weakly dependent on Poisson�s ratio v . 

c) Z is independent of the overall creep rate, but dependent on the creep index n , the 

distribution of G.  

 

Appendix 2: Z for beam problems 

For a mean subjected to loads perpendicular to it�s length, a similar analysis may be carried 

out when the total curviture rate  
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&&
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where 0κ&  is the curvature rate occurring at temperature 0T  and moment 0M . Again, for a moment 

history of the form )()(),( 0 tfxMtxM = , the elastic follow-up factor Z is given by, 
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where 
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Consider the following special cases, 

Case 1:  Cantilever beam of length L, subjected to a fixed lateral end displacement  and uniform 

temperature (Figure A1). 
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Case 2: Cantilever beam of length L, subjected to a fixed lateral end displacement  and uniform 

temperature in Lx β≤≤0  where 1=G . In LxL ≤≤β , 0=G .(Figure A1) 
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Case 3 and 4: Beam of length ( )L12 +α  under four point bending and uniform temperature 

(Figure A2). 
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At  0=t  displacements are assigned at the four loading points so that the moment in the 

central section is constant. These displacements are then held constant. For Case 3 we assume that 

G=1 for the entire beam giving, 
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++
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n
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α

 A2.8 

If we now assume, Case 4, that creep occurs only in the central section and no creep occurs in the 

outer sections, 

⎟
⎠
⎞

⎜
⎝
⎛ += 1

3

2α
Z  A2.9 

and Z is independent of n. 
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Caption 

Table 1. Variation of the Elastic Follow-up factor Z with creep index n for the beam problems of 

Figure A1 and A2 

Table 2. The definition of load domains for the holed plate 

Fig. 1 The load history with two distinct extremes to the elastic solution 

Fig. 2 Creep-reverse plasticity mechanisms by steady cyclic loads 

Fig. 3 Schematic representation of the quantities for (a) pure reverse plasticity mechanism and (b) 

creep-reverse plasticity mechanism 

Fig. 4 The flow chart for creep-reverse plasticity solution method 

Fig. 5 The geometry of the holed plate subjected to varying thermal loads and its finite element 

mesh (D/L=0.2), the yield stress MPaY 360=σ , the elastic modulus GPaE 208=  

Fig. 6 The elastic, shakedown, reverse plasticity and ratchet region for the holed plate with 

constant mechanical and varying thermal loading 

Fig. 7 The maximum flow stress with creep dwell time for a holed plate subjected  to varying 

thermal loads from 0 to 1.5 0tσ  (a)with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

Fig. 8 The maximum creep strain with creep dwell time for a holed plate subjected  to varying 

thermal loads from 0 to 1.5 0tσ  (a)with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

 



 30

Fig. 9 The elastic follow-up factor Z with creep dwell time for a holed plate subjected  to varying 

thermal loads from 0 to 1.5 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

Fig. 10 The maximum flow stress with creep dwell time for a holed plate subjected to varying 

thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

Fig. 11 The maximum creep strain with creep dwell time for a holed plate subjected to varying 

thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

Fig. 12 The elastic follow-up factor Z with creep dwell time for a holed plate subjected to varying 

thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 

Fig. A1 Configuration for Case 1 and 2 

Fig. A2 Beam under four point bending, Cases 3 and 4 
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Table 1 Variation of the Elastic Follow-up factor Z with creep index n for the beam 

problems of Figure A1 and A2 

Case 1 � Propped cantilever, creep over entire length 

Case 2a � Propped cantilever, creep over 0.5 of length 

Case 2b � Propped cantilever, creep over 0.1 of length 

Case 3- Beam under four point bending, creep over entire length 

Case 4 � Beam under four point bending, creep over constant moment section 

 

 

n 1 3 5 7 ∞→n  

Case 1 1 1.67 2.33 3.00 ∞  

Case 2a, 5.0=β  1.14 1.72 2.33 3.01 ∞  

Case 2b, 1.0=β  3.69 4.07 4.47 4.90 ∞  

Case 3, 1=α  1 1.19 1.30 1.36 1.67 

Case 4, 1=α  1.67 1.67 1.67 1.67 1.67 

 

 

 

 

 

 

 

 

Table 2 The definition of load domains for the holed plate 

 

Case The cyclic thermal load θΔ  pεΔ  rpεΔ  

Case 1 L000 5.105.105.1 ttt σσσ →→→→ 310869.2 −×  )(tcp εε Δ+Δ  

Case 2 L000 8.008.008.0 ttt σσσ →→→→ 0 )(tcεΔ  

 

 

 

 

 

 

 

 

 



 32

 

 

 

 

 

Fig. 1 The load history with two distinct extremes to the elastic solution 

 

 

 

 

 

 

 

 

(a) 0,0 ≠Δ≠Δ pp ερ                                          (b) 0,0 =Δ=Δ pp ερ  

Fig. 2 Creep-reverse plasticity mechanisms by steady cyclic loads 

 

 

 

 

 

 

 

(a)                                                                                       (b) 

Fig. 3 Schematic representation of the quantities for (a) pure reverse plasticity 

mechanism and (b) creep-reverse plasticity mechanism 
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Fig. 4 The flow chart for creep-reverse plasticity solution method 
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Fig. 5 The geometry of the holed plate subjected to varying thermal loads and its finite 

element mesh (D/L=0.2), the yield stress MPaY 360=σ , the elastic modulus GPaE 208=  
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Fig. 6 The elastic, shakedown, reverse plasticity and ratchet region for the holed plate 

with constant mechanical and varying thermal loading 
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(a)                                                                          (b) 

Fig. 7 The maximum flow stress with creep dwell time for a holed plate subjected  to 

varying thermal loads from 0 to 1.5 0tσ  (a) with constant 0ε&  using eqn (27A); (b)with 

temperature-dependent 0ε&  using eqn (27B) 
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(a)                                                                 (b) 

Fig. 8 The maximum creep strain with creep dwell time for a holed plate subjected  to 

varying thermal loads from 0 to 1.5 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 
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(a)                                                                           (b) 

Fig. 9 The elastic follow-up factor Z with creep dwell time for a holed plate subjected  to 

varying thermal loads from 0 to 1.5 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 
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(a)                                                                           (b) 

Fig. 10 The maximum flow stress with creep dwell time for a holed plate subjected  to 

varying thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A); (b) with 

temperature-dependent 0ε&  using eqn (27B) 
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(a)                                                                           (b) 

Fig. 11 The maximum creep strain with creep dwell time for a holed plate subjected  to 

varying thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A) ; (b) with 

temperature-dependent 0ε&  using eqn (27B) 
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(a)                                                                           (b) 

Fig. 12 The elastic follow-up factor Z with creep dwell time for a holed plate subjected  

to varying thermal loads from 0 to 0.8 0tσ  (a) with constant 0ε&  using eqn (27A) ; (b) 

with temperature-dependent 0ε&  using eqn (27B) 
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Figure A1 Configuration for Case 1 and 2 
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Figure A2 Beam under four point bending, Cases 3 and 4 

 

 




