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Abstract

In this paper we consider the orbital dynamics of a solar sail in the Earth-Sun circu-
lar restricted 3-body problem. The equations of motion of the sail are given by a set
of nonlinear autonomous ordinary differential equations, which are non-conservative
due to the non-central nature of the force on the sail. We consider first the equilibria
and linearisation of the system, then examine the nonlinear system paying partic-
ular attention to its periodic solutions and invariant manifolds. Interestingly, we
find there are equilibria admitting homoclinic paths where the stable and unstable
invariant manifolds are identical. What’s more, we find that periodic orbits about
these equilibria also admit homoclinic paths; in fact the entire unstable invariant
manifold winds off the periodic orbit, only to wind back onto it in the future. This
unexpected result shows that periodic orbits may inherit the homoclinic nature of
the point about which they are described.

1 Introduction

A soalr sail is a novel type of spacecraft which uses the radiation pressure of
photons reflecting off large sails as its impulse (see McInnes [13] for a detailed
description). A natural setting for the solar sail is the circular restricted 3-
body problem (CR3BP) where the Earth and the Sun are the primary bodies.
This is partly because the 3-body problem more accurately describes solar
system dynamics than the 2-body problem, but also because in the 3-body
problem there are regions where the gravitational forces on the sail due to the
primaries cancel each other, and hence the radiation pressure force on the sail
plays a more dominant role. Also, the demands on sail efficiency would be less
as the gravitational forces are less, and thus the applications of this analysis
are more in the near-term.

A standard procedure in analysing a nonlinear system of ode’s is to find its
equilibria or fixed points, linearise about these, and use the information from
linear order to inform an analysis of the nonlinear system; this is the procedure
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we will follow in this paper. In particular we will direct our attention to the
nonlinear system’s periodic orbits and invariant manifolds. There has been
some work carried out on the dynamics of solar sails in the CR3BP. McInnes
et al. [14] first described the surfaces of equilibrium points, and some possible
uses of same. In Baoyin and McInnes [1] and McInnes [12], the authors describe
periodic orbits about equilibrium points in the solar sail three body problem,
however they consider only equilibrium points on the axis joining the primary
masses, corresponding to artificial Lagrange points. Such orbits are analogous
to the classical ‘halo’ orbits (where by classical we mean the particle is only
acted upon by gavitational forces), which are well documented, for example
Farquhar [4], Farquhar and Kamel [5], Breakwell and Brown [3], Richardson
[15], Howell [9] and Thurman and Worfolk [18]. With regards to the invariant
manifolds, there has been much analysis of the invariant manifolds of halo
orbits in the classical problem for the sake of efficient transfer; for example
the Genesis mission trajectory was designed using this technique (see Koon et
al. [10]), and a ‘petit grand tour’ of Jovian moons has been proposed using a
similar analysis (see Gómez et al. [6]). Some homoclinic paths for the classical
triangular points have been found for large mass ratios (see for example Gómez
et al. [7]), and homoclinic paths can exist for collinear points with particular
mass ratios (see §9.9.2 of Szebehely [16]). Certain isolated homoclinic paths
have been found for periodic orbits about the collinear Lagrange points (see for
example Koon et al. [11]), however no periodic orbit whose invariant manifold
is made up entirely of homoclinic paths has been found, to the best of our
knowledge.

The structure of the paper is as follows: in the next section we will describe the
setting of the problem and the equations of motion of the solar sail, as well as
the equilibrium points. Section 3 considers the system linearised about equilib-
rium and the form of the linear solutions. In Section 4 we briefly describe the
Lindstedt-Poincaré perturbation method used to find nonlinear approxima-
tions to periodic orbits, and in Section 5 we examine the invariant manifolds
of equilibria and periodic orbits. We find a large variety in the position, in-
clination, amplitude and frequency of periodic solutions to the equations of
motion, and unexpected homoclinic paths associated with equilibria and pe-
riodic orbits which have no analogue in the classical problem. Such results
suggest that the solar sail CR3BP presents a rich and complex model, the
intricate details of which are only beginning to become apparent.

2 Equations of motion in the rotating frame

We follow the conventions set out in McInnes [13]. We consider a rotating
coordinate system in which the primary masses are fixed on the x-axis with
the origin at the centre of mass, the z-axis is the axis of rotation and the y-
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axis completes the triad. We chose our units to set the gravitational constant,
the sum of the primary masses, the distance between the primaries, and the
magnitude of the angular velocity of the rotating frame to be unity. We shall
denote by µ = 3 × 10−6 the dimensionless mass of the smaller body m2, the
Earth, and therefore the mass of the larger body m1, the Sun, is given by 1−µ
(see Figure 1).

Denoting by r, r1 and r2 the position of the sail w.r.t. the origin, m1 and m2

respectively, the solar sail’s equations of motion in the rotating frame are

d2r

dt2
+ 2ω ×

dr

dt
= a − ω × (ω × r) −∇V ≡ F , (1)

with ω = ẑ and V = −[(1 − µ)/r1 + µ/r2] where ri = |ri|. These differ from
the classical equations of motion in the CR3BP by the radiation pressure
acceleration term

a = β
(1 − µ)

r2
1

(r̂1.n)2n, (2)

where β is the sail lightness number, and is the ratio of the solar radiation
pressure acceleration to the solar gravitational acceleration. Here n is the unit
normal of the sail and describes the sail’s orientation. We define n in terms of
two angles γ and φ w.r.t. the rotating coordinate frame,

n = (cos(γ) cos(φ), cos(γ) sin(φ), sin(γ)), (3)

where γ, φ are the angles the normal makes with the x-y and x-z plane re-
spectively (see Figure 1).

Equilibria are given by the zeroes of F in (1). We find a 3-parameter family
of equilibria, as described in McInnes [13]. These are found by specifying the
lightness number β and the sail angles γ and φ, and solving F = 0 for one of
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Fig. 1. The rotating coordinate frame and the sail position therein. The angles γ and
φ which the sail normal makes with respect to the rotating frame are also shown.
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Fig. 2. Surfaces of equilibrium points in the xe-ze parameter space. Each curve is
specified by a constant value of β, and the position of the equilibrium point along
the curve is given by γ. The grey shaded regions denote areas where equilibrium is
not possible.

two possible equilibria, one on the L1 side and another on the L2 side of the
Earth. For reasons we shall describe in the next section we will take φ = 0 so
the equilibrium (and sail normal) is in the x-z plane. In Figure 2 we show some
of the equilibria near the Earth for low β values. Practically speaking, while
a β value of about 0.3 − 0.4 is considered within the realm of possibility of
current engineering, to put the analysis in this paper well within the near-term
we will consider very modest β values of about 0.05.

3 Linearised system

We linearise about the equilibrium point (in the x-z plane) by making the
transformation r → re + δr, Taylor expanding F about re, and neglecting
the terms quadratic in δr. We assume the orientation of the sail will remain
fixed under perturbation of the sail position, in which case γ, φ and β are
constants. Letting δr = (δx, δy, δz)T and X = (δr, δṙ)T , our linear system is
Ẋ = AX with

A =




0 I

M Ω



 , M =





a 0 b

0 c 0

d 0 e




, Ω =





0 2 0

−2 0 0

0 0 0




, (4)
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where a dot denotes differentiation w.r.t. t,

a = (∂xF
x)|e, b = (∂zF

x)|e, c = (∂yF
y)|e, d = (∂xF

z)|e, e = (∂zF
z)|e,

and b 6= d. Here F a denotes the a-th component of F , and M is sparse due to
ye = 0.

The key difference between this analysis and the classical orbits about the
collinear Lagrange points is the term d 6= 0, which appears precisely because
we are linearising about an equilibrium point with ze 6= 0. This means we
cannot decouple the z-equation. While this initially seems to make the problem
more complicated, we can use this to our advantage, as will be made clear.

The characteristic equation of the Jacobian A is bi-cubic (whose corresponding
cubic equation has real roots); this means the eigenvalues of A are either in
pairs of pure imaginary conjugates or real and of opposite sign. Thus equilibria
in the x-z plane will have the dynamical structure of centres and saddles, akin
to the classical collinear Lagrange points; in fact we find the linear spectrum
to be typically {

λ1i,−λ1i, λ2i,−λ2i, λr,−λr

}
. (5)

Had we chosen φ 6= 0 for an equilibrium out of the x-z plane, then M given
in (4) would be full and the characteristic equation would not have been bi-
cubic; thus the dynamical structure of equilibria out of the x-z plane will be
stable/unstable spirals and saddles. In fact, equilibria in the x-y plane (γ = 0,
φ 6= 0) will be stable spirals crossed with saddles for φ < 0 (ye < 0) and
unstable spirals crossed with saddles for φ > 0 (ye > 0). In this sense the
x-axis is a bifurcation surface.

If we label the eigenvectors associated with λai (a = 1, 2) as ua + wai, and
the eigenvectors associated with λr,−λr as v1, v2, then the general solution
of the linear system (4) is [2]

X(t) = cos(λ1t)
[
Au1 + Bw1

]
+ sin(λ1t)

[
Bu1 − Aw1

]

+ cos(λ2t)
[
Cu2 + Dw2

]
+ sin(λ2t)

[
Du2 − Cw2

]

+Eeλrtv1 + Fe−λrtv2. (6)

We see that due to the coupling of the z-equation in the linear system, which in
turn is due to our choice of ze 6= 0, the linear order solution naturally contains
periodic solutions in both linear frequencies. By setting E = F = 0 we may
switch off the real modes, and by setting either A = B = 0 or C = D = 0 we
have periodic solutions in the frequency of our choice.

We note that we may also consider combinations of both frequencies in the lin-
ear solutions, a generalisation of a familiy of classical curves known as ‘roses’.
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While these trajectories will not in general close, by choosing an equilibrium
point whose linear frequencies are in ratio we may find multiply periodic or-
bits, however this raises some stability issues. We will not pursue such orbits
in this paper.

4 High-order approximations to periodic orbits

The linear solutions given in the previous section will only closely approximate
the motion of the sail given in (1) for small amplitudes. For larger amplitude
periodic orbits, we have two options: nonlinear analytical approximations or
numerical continuation of initial data. While numerical continuation is the
most straightforward and can be continued beyond the region where the lin-
ear term dominates, it is a slow process and needs to done for each equilibrium
point of the 2-parameter family separately. The nonlinear analytical approxi-
mations will quickly provide converging initial data for large amplitude orbits
at arbitrary equilibria, and so is to be preferred in the region where the linear
term dominates. To calculate high-order approximations to periodic orbits we
use the method of Linstedt-Poincaré. This procedure is well known and is
described in the literature, for example [15,18], thus we will only outline the
relevant issues for this model.

We let ε be a perturbation parameter and expand each coordinate as x →
xe + εx1 + ε2x2 + . . . etc. We rescale the time coordinate τ = ωt with ω =
1 + εω1 + . . ., and group together the powers of ε in the high-order Taylor
expansion of F . We choose our linear solution to be

x1 = kAy cos(λτ + ξ), y1 = Ay sin(λτ + ξ), z1 = mAy cos(λτ + ξ), (7)

where λ can be λ1 or λ2, k, m are given in terms of components of the eigen-
vectors and Ay, ξ are free parameters (we have set the y-amplitude to be the
free parameter to avoid singularities in the coefficients when the orbits pass
through vertical or horizontal). We use these linear solutions to build up non-
linear approximations to periodic orbits one order at a time in the following
way:

At each order of ε, the system to be solved will be

x′′

n − 2y′

n − axn − bzn = g1(xn−1, yn−1, zn−1, xn−2, . . .)

y′′

n + 2x′

n − cyn = g2(xn−1, yn−1, zn−1, xn−2, . . .)

z′′n − dxn − ezn = g3(xn−1, yn−1, zn−1, xn−2, . . .), (8)

where prime denotes differentiation w.r.t. τ . The left hand side is the same
form as the linear system (4), and on the right hand side the previous orders’
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solutions act as forcing terms. We use the freedom in ωn to switch off the
resonant or secular terms in the inhomogeneous part, that is those compo-
nents on the right hand side of the form (7), and what remains is a series of
trigonometric subharmonics up to order n.

In calculating the solution at nth order, we find two sets of solutions depending
on whether n is even or odd. When n is even, the nth order solutions have the
form (letting T = λτ + ξ)

xn =pn0 + pn2 cos(2T ) + . . . + pnn cos(nT ),

yn = qn2 sin(2T ) + . . . + qnn sin(nT ),

zn =sn0 + sn2 cos(2T ) + . . . + snn cos(nT ), (9)

with ωn−1 = 0. When n is odd, the solutions at nth order have the form

xn = pn3 cos(3T ) + . . . + pnn cos(nT ),

yn = qn1 sin(T ) + qn3 sin(3T ) + . . . + qnn sin(nT ),

zn = sn1 cos(T ) + sn3 cos(3T ) + . . . + snn cos(nT ), (10)

and ωn−1 solves
2λβn1

(c + λ2)
+

bγn1

(e + λ2)
− αn1 = 0. (11)

Here αnj, βnj and γnj are the coefficients of the cos, sin and cos terms in the
functions g1, g2 and g3 respectively at order n given in (8), and the coefficients
pnj, qnj and snj are given by

−(a + j2λ2)pnj − 2jλqnj − bsnj − αnj = 0,

qnj =
−2jλpnj − βnj

(c + j2λ2)
, snj =

−dpnj − γnj

(e + j2λ2)
, (12)

with the exception of qn0 = 0 and pn1 = 0.

With these high order approximations, we may find approximate initial data
from which to integrate the system of equations (1). However these will not
evolve to exactly periodic trajectories, as they are only approximations to
periodic solutions. Thus we must define a differential corrector with which to
adjust the initial data so as to close the orbit. As differential correctors are
discussed in much detail in the literature, particularly relating to the classical
halo orbits (see for example [3,15,18]), we will not describe them here.

With the high order approximations and the differential corrector described
above, we may integrate the full nonlinear system of equations (1) to find large
amplitude periodic orbits. We find there is a 4-parameter family of periodic
orbits about equilibria in the x-z plane: two parameters specifying the equilib-
rium point and two specifying the amplitude in each of the linear frequencies.
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There is therefore much variety in the position, inclination, amplitude and pe-
riod of the orbits we may describe, leading to a rich source of periodic orbits
for various applications. To illustrate this, we may hold the amplitude fixed
and allow γ to vary, thus forming a tube of periodic orbits along the β level
curve. An example of this for one family of periodic orbits is shown in Figure
3.

5 Homoclinic paths

As a practical consideration it is useful to examine the transfer of a solar sail
from Earth orbit to an equilibrium point. This is most easily accomplished by
considering the equilibrium point’s invariant manifolds.

Letting r = (x, y, z)T and X = (r, ṙ), we write the system (1) as Ẋ = f(X)
with equilibrium given by f(Xe) = 0. Let us denote by E

u, Es and E
c the

linear eigenspaces spanned by the unstable, stable and centre eigenvectors of
the equilibrium point, that is those due to eigenvalues with positive, negative
and zero real part respectively, and denoted v1, v2 and ua+iwa in (6). From (5)
we see that these eigenspaces are typically of dimension 1,1 and 4 respectively.
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We will define the invariant manifolds W
u, Ws and W

c as those families of
solutions to the non-linear system (1) which are tangential to E

u, Es and E
c

at the equilibrium point, with the property that

X(t0) ∈ W
∗ ⇒ X(t) ∈ W

∗ ∀t,

that is, the manifolds are invariant under the flow.

These manifolds are of great practical importance as they characterise the
dynamics of (1) away from the equilibrium point. For example, the centre
manifold describes the surface on which periodic solutions exist, and the
Lindstedt-Poincaré method can be seen as calculating high-order approxima-
tions to trajectories on the centre manifold. The stable and unstable manifolds
characterise the flow onto and away from the equilibrium point, in particu-
lar the unstable mode dominating the flow and pushing solutions away from
equilibrium in the direction of the unstable manifold.

The true stable and unstable manifolds tend onto and away from the equi-
librium point asymptotically. To avoid having to integrate the equations of
motion for infinite lengths of time we must therefore approximate the invari-
ant manifolds by perturbing the initial data a small amount away from the
equilibrium point in the direction of the linear eigenvectors, and then inte-
grate the system in this direction forward and backward in time. If we find a
portion of the approximation to the stable manifold passes close to the Earth
then this provides us with a potential efficient trajectory on which to transfer
from the Earth to the equilibrium point.

Interestingly however, we find that there are certain equilibria on the L2 side
of the Earth which admit homoclinic paths; we define a homoclinic path as a
phase path which joins an equilibrium point to itself. This means the stable
and unstable invariant manifolds intersect smoothly and thus are identical.
Equilibrium points admitting homoclinic paths are not to be confused with
homoclinic points, which are points (other than the equilibrium point) where
the stable and unstable invariant manifolds intersect transversally. Homoclinic
paths occur for specific parameter values and are not structurally stable (in
fact they represent a homoclinic bifurcation), unlike homoclinic points. See,
for example, Tabor [17] for an introduction to homoclinic points/paths.

We present some of these points in Figure 4 for different parameter values. As
mentioned above, homoclinic paths have the equilibrium point as an asymp-
totic limit as t → ±∞; in fact a homoclinic path can be seen as a periodic or-
bit of infinite period (hence the old-fashioned term ‘asymptotically periodic’).
The trajectories presented here are therefore approximations to homoclinic
paths and so they will not settle exactly on the equilibrium point; as the sail
approaches the equilibrium the unstable mode will push the sail away.
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We may also define the invariant manifolds of periodic orbits about equilibria
in a manner analogous to above, using Floquet theory (see Grimshaw [8] for
example). Let Γ(t) denote a periodic solution to (1), with period T . By letting
X = Γ+Y , we may linearise the nonlinear system about this periodic solution,
resulting in the variational equations

Ẏ =
∂f

∂X

∣∣∣∣
X=Γ

Y ≡ A(t) Y , (13)

where A(t+T ) = A(t). This is a non-autonomous linear system with periodic
coefficients. A well known result of Floquet theory is that for every funda-
mental solution matrix Y (t) of a system such as (13), there is a non-singular
constant matrix B such that

Y (T ) = Y (0) B. (14)

Therefore the eigenvalues of B tell us about the linear orbital stability of
the periodic orbit. Recasting the variational equations in terms of the state
transition matrix (or principal fundamental matrix) Φ = ∂X/∂X(0), we have

Φ̇ = A(t)Φ, Φ(0) = I,

and thus we asscociate the matrix B given in (14) with Φ(T ), the monodromy
matrix.

As the divergence of our original system vanishes, that is the trace of the
Jacobian

∑
∂f i/∂Xi = 0 (see (4)), Louiville’s theorem (constancy of volume

in phase space) applies. Thus we may say the following: the eigenvalues of
the monodromy matrix occur in reciprocal pairs, two of them are unity, and
stability of the periodic orbit is given by eigenvalues within the unit circle in
the complex plane. As the saddle nature of the equilibrium point about which
the periodic orbit is described will dominate the flow in the region in which
the linear terms dominate (and thus the region where the Lindstedt-Poincaré
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approximations are valid), it follows that all of the periodic orbits described
in this paper will be unstable, that is all monodromy matrices will contain
two real reciprocal eigenvalues one of which will be larger than one. Complex
conjugate eigenvalues must be on the unit circle and this represents a marginal
stability, akin to eigenvalues of the Jacobian on the imaginary axis. Thus we
find the spectrum of the monodromy matrix of the periodic orbits described
in this paper to be

{
1, 1, λi, λ̄i, λr, 1/λr

}
, (15)

where an overbar denotes complex conjugacy.

Analogous to equilibrium points, we may integrate points along the periodic
orbit in the direction of the eigenvectors of the monodromy matrix and find
the trajectories which wind onto and off of the periodic orbit, that is the
stable and unstable invariant manifolds of the periodic orbit. We find that the
periodic orbits inherit the homoclinic characteristics of the equilibrium point
about which they are described, and we show in Figure 5 an example of this
for one of the equilibrium points in Figure 4. We see that every trajectory in
the invariant manifold of the periodic orbit is itself a homoclinic path, and
this persists for varying amplitudes of the periodic orbit.

6 Conclusions

In this paper we have presented an initial analysis of the periodic orbits avail-
able to solar sails in the circular restricted three-body problem (CR3BP). We
find there is a four parameter family of periodic orbits about equilibria in the
x-z plane (two due to choice of equilibrium point and two due to amplitudes
in the linear frequencies). We have further examined the invariant manifolds
of equilibria and periodic orbits, and have found unexpected families of homo-
clinic paths. These homoclinic paths suggest the model contains an interesting
degree of complexity, perhaps akin to the Rössler attractor. There, homoclinic
paths can be seen as a limit of multiply periodic orbits and this suggests
that the solar sail model will contain many families of periodic orbits which
pass close to the equilibrium point. This limit-type structure is seen also in
the triangular points of the classical three-body problem. A more detailed ex-
amination of the homoclinic and indeed heteroclinic paths contained in the
problem should therefore be of interest.

We conclude that the the dynamics associated with solar sails in the CR3BP
present a rich and complex topic for analysis, and this paper represents only
a first step in unraveling the many details of this model.
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