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Abstract

The recurrent states of the Abelian sandpile model (ASM) are those states that
appear infinitely often. For this reason they occupy a central position in ASM
research. We present several new results for classifying recurrent states of the
Abelian sandpile model on graphs that may be decomposed in a variety of ways.
These results allow us to classify, for certain families of graphs, recurrent states in
terms of the recurrent states of its components. We use these decompositions to
give recurrence relations for the generating functions of the level statistic on the
recurrent configurations. We also interpret our results with respect to the sandpile
group.

Keywords: Abelian sandpile model, recurrent states, graph decomposition, level
polynomial, sandpile group.

1 Introduction

One fundamental aspect of ASM research concerns the classification of the
recurrent states of the model; those states that appear infinitely often in the
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long-time running of the model. In this abstract we present several new results
classifying recurrent states of the ASM on graphs which may be decomposed
in a variety of ways. The level statistic of a sandpile configuration, a quantity
that is equal (up to an additive constant) to the sum of its heights, is stud-
ied with respect to these decompositions. We then show the effect of these
graph decompositions on the sandpile group, which is the set of recurrent
states equipped with an abelian addition operation. More detailed proofs and
additional examples can be found in [7].

Let G = (V,E) be a finite, connected, loop-free, undirected multigraph
with vertex set V = {v0, . . . , vn}. Let di = dGi = deg(vi) be the degree
of the vertex vi in G. Given i, j ∈ {0, . . . , n} with i ≤ j, we let V[i,j] =
{vi, vi+1, . . . , vj}. For W ⊆ V , we let G[W ] be the subgraph of G with vertex
set W and edge set the edges of G with both endpoints in W . We will consider
the sandpile model on the graph G in which a distinguished vertex, v0 say,
acts as a sink. We indicate this by writing it as a pair, e.g. (G, v0).

Let Z+ be the set of non-negative integers. A configuration on (G, v0) is a
vector c = (c1, . . . , cn) ∈ Z

n
+ that assigns the number ci to vertex vi. We think

of ci as the number of ‘grains of sand’ at the vertex vi. Configv0(G) is the set
of all configurations on (G, v0). Let αi ∈ Z

n
+ be the vector with 1 in the i-th

position and 0 elsewhere.

We say that a vertex vi in a configuration c = (c1, . . . , cn) ∈ Configv0(G)
is stable if ci < di. Otherwise it is unstable. A configuration is stable if all
its non-sink vertices are stable, and we denote by Stablev0 (G) the set of all
stable configurations on (G, v0).

Unstable vertices may topple. We define the toppling operator Ti cor-
responding to the toppling of an unstable vertex vi ∈ V in a configuration
c ∈ Configv0(G) by Ti(c) := c − diαi +

∑
j:{vi,vj}∈E

αj, where the sum is over
all vertices adjacent to vi, counted with multiplicity.

Performing this toppling may cause other vertices to become unstable,
and we may topple these also. One can show that starting from some unstable
configuration c and toppling successively unstable vertices, we eventually reach
a stable configuration c′ (think of the sink as absorbing grains). Moreover, this
configuration c′ does not depend on the sequence in which vertices are toppled.
We write c′ = σ(c) and call it the stabilisation of c.

Definition 1.1 A configuration c ∈ Configv0(G) is recurrent if there exists
some configuration a ∈ Configv0(G), satisfying ai ≥ di for all i ∈ {1, . . . , n},
such that c = σ(a). Given a graph G, we let Recv0 (G) be the set of recurrent
states on the graph (G, v0).
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Given a recurrent configuration c ∈ Recv0 (G), define the level of c to be
levelv0 (c) := dv0 − |E| +

∑
v∈V[1,n]

cv, where |E| denotes the number of elements

in the set E. From [8, Thm. 3.5] we have that if G = (V,E) is a graph and
c ∈ Recv0 (G), then 0 ≤ levelv0 (c) ≤ |E| − |V |. Thus the level of a recurrent
configuration is always a non-negative integer. We define the level polynomial
of a graph G to be the generating function of the level statistic over the set of
recurrent configurations on that graph: LevelG,v0 (x) :=

∑
c∈Recv0 (G)

xlevelv0 (c).

2 Recurrent states under edge duplication

Let G = (V,E) be a graph. For a positive integer k we define G(k) to be the
multigraph G where every edge of E is replaced with k copies of itself. That
is G(k) =

(
V,E(k)

)
, where E(k) is the multiset

⋃
e∈E

{e1, . . . , ek}, with ej = e for

all j ∈ {1, . . . , k}.

Theorem 2.1 Let c = (c1, . . . , cn) ∈ Configv0(G). Then the following are
equivalent:

(a) c ∈ Recv0
(
G(k)

)
.

(b) c̃ := (�c1/k�, . . . , �cn/k�) ∈ Recv0 (G).

Theorem 2.1 can be re-stated as follows: c = (c1, . . . , cn) ∈ Recv0
(
G(k)

)
iff there exists a unique pair (γ, α) with γ = (γ1, . . . , γn) ∈ Recv0 (G) , α =
(α1, . . . , αn) ∈ {0, . . . , k − 1}n such that ci = kγi + αi for all 1 ≤ i ≤ n. A
straightforward computation then yields the following.

Corollary 2.2 Let k be a positive integer. We have:

LevelG(k),v0
(x) =

(
1 + x+ . . .+ xk−1

)|V |−1
· LevelG,v0

(
xk
)
.

In particular,
∣∣Recv0 (G(k)

)∣∣ = k(|V |−1)|Recv0 (G) |.

3 Cut vertices in graphs with an underlying tree-like

structure

A cut vertex in a graph G is a vertex whose removal increases the number of
its connected components. Consider a tree (T, ρ), rooted at some vertex ρ.
For clarity, we will refer to vertices of the tree as nodes, to distinguish them
from vertices of the graph G. Let nodes (T ) denote the node set of T . Since T
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is rooted, every non-root node t ∈ nodes (T ) \ {ρ} will have an adjacent node
on the (unique) path from t to the root ρ called the parent of t and denoted
by parent(t). Any other nodes adjacent to t is called a descendant of t. If a
node has no descendants then it is called a leaf.

Definition 3.1 We will say that the graph-sink pair (G, vρ) has an underlying
cv-tree structure (T, ρ) if the following holds. The graph G can be written as

G =
⋃

t∈nodes(T )

Ht,

where the pair (T, ρ) is a rooted tree and associated to every node t ∈ nodes (T )
is a connected, loop-free, graph Ht = (Vt, Et). Each graph Ht has a distin-
guished vertex vt ∈ Vt such that:

(a) for all t ∈ nodes (T ) \ {ρ}, we have Vt ∩ Vparent(t) = {vt};

(b) if (t, t′) is not an edge of T , then Vt ∩ Vt′ = ∅.

See Figure 1 for an illustration of the construction in Definition 3.1. Note that
for all t ∈ nodes (T )\{ρ}, vt is a cut vertex for the graph G. In particular, the
so-called block decomposition, where the blocks are the maximal two-connected
components of a separable graph G, gives a cv-tree structure for G.

Fig. 1. A graph with its underlying tree structure.

Theorem 3.2 Let G =
⋃

t∈nodes(T )

Ht have an underlying cv-tree structure (T, ρ).

Let c ∈ Configvρ(G). For any node t ∈ nodes (T ), we let t1, . . . , tk be the de-

scendants of t in T . Define the configurations c(t) on Configvt(Ht) by:

c(t)(v) :=

{
c(v) if v /∈ {vt1 , . . . , vtk}

c(v)− dHti (v) if v = vti
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Then c ∈ Recvρ (G) iff c(t) ∈ Recvt (Ht) for all t ∈ nodes (T ).

The proof is by induction on the number of nodes in the cv-tree |nodes (T ) |,
which essentially reduces the proof to the case where G has a single cut vertex.
This characterisation allows us to compute the following expression for the
level polynomial of a graph with a cv-tree structure.

Corollary 3.3 Let G =
⋃

t∈nodes(T )

Ht be constructed on a rooted tree (T, ρ).

Then we have

LevelG,vρ (x) =
∏

t∈nodes(T )

LevelHt,vt (x) . (1)

Remark 3.4 The level polynomial is a specification of the well-studied Tutte
polynomial [8]. Since the Tutte polynomial satisfies an identical decompo-
sition to Equation (1) [9, Prop. (iv)], Corollary 3.3 follows, although our
Theorem 3.2 provides a new combinatorial explanation of this equality.

4 Decomposition of the sandpile group

Let (G, v0) be a graph, with vertex set V = {v0, . . . , vn} and edge set E.
Recall that σ : Configv0(G)→ Stablev0 (G) denotes the stabilisation operator.
We define a binary operation ⊕ on Stablev0 (G) by:

∀c, c′ ∈ Stablev0 (G) , c⊕ c′ := σ (c+ c′) , (2)

where + denotes pointwise addition in Stablev0 (G). Dhar showed in [5] that
(Recv0 (G) ,⊕) is an abelian group, called the sandpile group, and we denote
it by S(G, v0).

Theorem 4.1 Let G =
⋃

t∈nodes(T )

Ht have an underlying cv-tree structure (T, ρ).

We have:

S (G, vρ) ∼=
∏

t∈nodes(T )

S (Ht, vt) ,

where ∼= denotes group isomorphism, and
∏

the direct product of the groups.

Proof sketch. As with Theorem 3.2, an induction argument reduces the proof
to the case where |nodes (T ) | = 2. Denote by H1, H2 the two components
of the graph G in this case. Given c = (c1, . . . , cn+m) ∈ Configv0(G), let
c(1) := (c1, . . . , cn−1, cn − dH2

n ) and c(2) := (cn+1, . . . , cn+m). The main step
of the proof is to understand the behaviour of the operator ⊕ restricted to
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the components H1, H2 of the graph G. This yields Lemmas 4.2 and 4.3.
Theorem 3.2 then follows from several group theory results [3, Chapter IV].

Lemma 4.2 For any configurations c, c′ ∈ Recv0 (G), we have

(c⊕ c′)(2) = c(2) ⊕ c′(2). (3)

Lemma 4.3 For any configurations c, c′ ∈ Recv0 (G), we have

(c⊕ c′)(1) = c(1) ⊕ c′(1) ⊕ καn, (4)

where αn is the configuration with one grain at the vertex vn and none else-
where, and κ = κ

(
c(2), c′(2)

)
:= dH2

n + |c(2)| + |c′(2)| − |c(2) ⊕ c′(2)|, with |c|
designating the total number of grains of a configuration c. �
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