Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering

Heydari, Esmaeil and Mabbott, Samuel and Thompson, David and Graham, Duncan and Cooper, Jonathan M. and Clark, Alasdair W. (2016) Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering. In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII. Proceedings of Spie, 9721 . SPIE, Bellingham WA. ISBN 9781628419559

[img]
Preview
Text (Heydari-etal-PSPIE2016-Molecularly-active-nanoplasmonic-surfaces-for-DNA-detection)
Heydari_etal_PSPIE2016_Molecularly_active_nanoplasmonic_surfaces_for_DNA_detection.pdf
Accepted Author Manuscript

Download (998kB)| Preview

    Abstract

    We report a novel nanophotonic biosensor surface capable of both colorimetric detection and Raman-scattered detection of DNA infection markers at extreme sensitivities. Combining direct-write lithography, dip-pen nanolithography based DNA patterning, and molecular self-assembly, we create molecularly-active plasmonic nanostructures onto which metallic nanoparticles are located via DNA-hybridization. Arraying these structures enables optical surfaces that change state when contacted by specific DNA sequences; shifting the surface color while simultaneously generating strong Raman-scattering signals. Patterning the DNA markers onto the plasmonic surface as micro-scale symbols results in easily identifiable color shifts, making this technique applicable to multiplexed lab-on-a-chip and point-of-care diagnostic applications.