Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Machining-based coverage path planning for automated structural inspection

MacLeod, Charles Norman and Dobie, Gordon and Pierce, Stephen Gareth and Summan, Rahul and Morozov, Maxim (2018) Machining-based coverage path planning for automated structural inspection. IEEE Transactions on Automation Science and Engineering, 15 (1). pp. 202-213. ISSN 1545-5955

Text (Macleod-etal-IEEE-TASE-2016-Machining-based-coverage-path-planning-for-automated)
Accepted Author Manuscript

Download (635kB)| Preview


    The automation of robotically delivered nondestructive evaluation inspection shares many aims with traditional manufacture machining. This paper presents a new hardware and software system for automated thickness mapping of large-scale areas, with multiple obstacles, by employing computer-aided drawing (CAD)/computer-aided manufacturing (CAM)-inspired path planning to implement control of a novel mobile robotic thickness mapping inspection vehicle. A custom postprocessor provides the necessary translation from CAM numeric code through robotic kinematic control to combine and automate the overall process. The generalized steps to implement this approach for any mobile robotic platform are presented herein and applied, in this instance, to a novel thickness mapping crawler. The inspection capabilities of the system were evaluated on an indoor mock-inspection scenario, within a motion tracking cell, to provide quantitative performance figures for positional accuracy. Multiple thickness defects simulating corrosion features on a steel sample plate were combined with obstacles to be avoided during the inspection. A minimum thickness mapping error of 0.21 mm and a mean path error of 4.41 mm were observed for a 2 m² carbon steel sample of 10-mm nominal thickness. The potential of this automated approach has benefits in terms of repeatability of area coverage, obstacle avoidance, and reduced path overlap, all of which directly lead to increased task efficiency and reduced inspection time of large structural assets.