
This version is available at https://strathprints.strath.ac.uk/57912/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
The Role of Thermostats in Simulations of Jamming
Calum Williams, Mark Haw, Leo Lue, Claire Forsyth, Vanesa Peixoto

Summary
- Jamming occurs in a multitude of different systems on various length and time scales.
- Underlying mechanisms are not clearly understood.
- Can simulations verify behaviour and patterns found in experiments?
- Can manipulation of thermostats mimic the hydrodynamic interactions?

Equations of motion
\[
\begin{align*}
\dot{\mathbf{r}}_i &= \frac{\mathbf{p}_i}{m} + \gamma \dot{y}_i \mathbf{e}_x + \frac{s}{T} \frac{\partial T_{\text{conf}}}{\partial \mathbf{r}_i} \\
\dot{\mathbf{p}}_i &= \mathbf{F}_i - \gamma p y_i \mathbf{e}_x - \alpha \mathbf{p}_i \\
\dot{s} &= -Q \left(T_{\text{conf}} - T \right)
\end{align*}
\]

- Kinetic temperature defined by velocities, configurational defined by positions.

Experimental Method
- Couette system with densely packed colloidal particles.
- Intermittent jamming detected by needle and piezo sensor inserted in system.
- Magnitude of jamming event related to voltage

Equations of state

Experimental Data Analysis
By gathering voltage data over time it is possible to analyse how the internal forces fluctuate as the system moves between jammed and flowing states.

Simulation Methods
- Numerical Integration with 4th order Gear predictor-corrector algorithm
- Lees Edwards & periodic boundary conditions (sliding brick)

Benchmarking code
- Comparison of thermostats with Lue et al. \cite{1}

CDFs and Power Laws
- Noise removed from data and time between remaining peaks obtained.
- Time between peaks analogous to jamming duration.
- Power law algorithms\cite{2} implemented to temporal statistics

Conclusions
- Temporal statistics of force fluctuations show jamming durations follow a power law behaviour.
- Successful Molecular Dynamics simulations for both kinetic and configurational thermostats.
- Regions of shear thickening with configurational thermostat currently being explored.

1. \cite{1} “Configurational Thermostats for Molecular systems”, L. Lue at al, Mol Phys 100 (14), 2002.