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Abstract
Pd-catalysed C–C bond formation is an essential tool within the pharmaceutical and agrochemical industries. Many of these reac-

tions rely heavily on polar aprotic solvents; however, despite their utility, these solvents are incompatible with the drive towards

more sustainable chemical synthesis. Herein, we describe the scope and limitations of an alternative to DMF derived from renew-

able sources (CyreneTM) in Sonogashira cross-coupling and Cacchi-type annulations.
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Scheme 1: The Sonogashira reaction.

Introduction
The Sonogashira reaction [1,2] (Scheme 1) is a robust and

broadly applicable Pd-catalysed bond-forming process that,

alongside the Suzuki–Miyaura reaction [3], has steadily become

an indispensible tool for C–C bond formation in the pharmaceu-

tical industry [4]. While the Sonogashira reaction can be effec-

tively carried out in a variety of media [1,2], in the general

sense this process clearly relies upon the use of dipolar aprotic

solvents, in particular DMF. Indeed, some 41% of all Sono-

gashira reactions reported using aryl iodides can be linked to the

use of DMF as a solvent [5].

In this context, the sustainability movement within pharmaceu-

tical research and development strives to substitute solvents

that have regulatory and environmental issues for those with a

lower perceived risk. Indeed, solvent replacement has

been designated a key research area with numerous pharmaceu-

tical companies detailing their efforts towards a more sustain-
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able solvent selection as part of their overall sustainability

programmes [6-23].

Based on its associated regulatory issues [24], it is perhaps no

surprise that DMF continues to be a priority solvent for replace-

ment. With legislation surrounding the use of DMF becoming

increasingly stringent [24], numerous efforts have been made

towards the use of alternative media in the Sonogashira reac-

tion [25-30]. However, notwithstanding its issues, DMF is an

excellent solvent for the Sonogashira reaction and its replace-

ment frequently occurs at the expense of increased temperature

(and therefore potentially substrate compatibility), reaction

time, catalyst loading or the requirement for non-commercial/

expensive catalysts, and yield [25-30]. Consequently, poor

choice of solvent replacement can result in one of industry’s

workhorse reactions becoming rather less predictable and

robust.

In this regard, dihydrolevoglucosenone (Cyrene, Figure 1),

accessed in two steps from cellulose [31,32], has been shown to

possess similar physical properties to those of DMF and other

dipolar aprotic solvents [31,32]. In addition to its renewability,

Cyrene, as yet, has no associated pernicious effects and could

potentially represent a direct and functional replacement in

many of the fundamental reactions that typically employ DMF

[31,32]. The replacement of solvents with regulatory issues with

bio-derived alternatives has provided a series of advances

within the cross-coupling arena [33], allowing efficient C–C

bond formation via cornerstone Pd-based methods including

Suzuki–Miyaura [34,35], Mizoroki–Heck [36,37], Sonogashira

[38], Stille [39], Hiyama reactions [40], and hydroformylation

reactions [41].

Figure 1: Cyrene vs. DMF – selected physical properties [31,32].

In the current study, we present the use of Cyrene as an alterna-

tive solvent (direct DMF replacement) for the Sonogashira reac-

tion, as well as related Cacchi-type annulations [42,43], with an

emphasis on scope and limitations of its application.

Results and Discussion
To explore the use of Cyrene in the context of the Sonogashira

cross-coupling, we established a simple benchmark reaction

using iodobenzene (1a) and phenylacetylene (2a) (Table 1).

A typical literature-derived catalyst system was employed

(Pd(PPh3)2Cl2 with CuI additive [44,45]) and conversion to

diphenylacetylene (3a) was monitored.

Table 1: Reaction optimisation and comparison with existing solvents.a

Entry Reaction conditions 3a (%)b

1 0.1 M, Et3N (3 equiv), 20 °C, 5 h 94
2 0.3 M, Et3N (3 equiv), 20 °C, 5 h 98
3 0.5 M, Et3N (3 equiv), 20 °C, 5 h 100
4 0.5 M, K3PO4 (3 equiv), 20 °C, 5 h –c

5 0.5 M, Cs2CO3 (3 equiv), 20 °C, 5 h –c

7 0.5 M, Et3N (1.1 equiv), 20 °C, 5 h 98
8 0.5 M, Et3N (1.1 equiv), 30 °C, 1 h 96
9d 0.5 M, Et3N (1.1 equiv), 30 °C, 1 h 81
10e 0.5 M, Et3N (1.1 equiv), 30 °C, 1 h 87

a1 (1 equiv, 0.25 mmol), 2 (1.05 equiv, 0.26 mmol), Pd(PPh3)2Cl2
(2 mol %), CuI (4 mol %), base (see table), Cyrene, temperature
(see table), time (see table), N2. bIsolated yield. cReaction mixture
solidified, product was not isolated. dTHF used as solvent. eDMF used
as solvent.

Pleasingly, high conversion to product was immediately ob-

served at room temperature in 5 h (94%, Table 1, entry 1).

This high conversion was consistent across several reaction

concentrations (Table 1, entries 2 and 3) allowing for a reduc-

tion in solvent volume, commensurate with the principles of

green chemistry [46,47].

In attempts to further limit waste, we scanned a series of bases

(see Supporting Information File 1); organic bases consistently

performed more effectively and alternatives to Et3N provided

no significant advantages. However, during this process we

identified some potential limitations of this emerging solvent.

Specifically, inorganic bases such as K3PO4 and Cs2CO3

(Table 1, entries 4 and 5) resulted in the generation of a solid

reaction mixture. Further analysis revealed that the aldol prod-

ucts 4a and 4b (Figure 2) were generated under specific reac-

tion conditions.

The manufacturers note that when using Cyrene, materials to

avoid are strong acids, and strong oxidising and reducing

agents. Since sensitivity to base was not specified, we surveyed

a range of bases at various temperatures to evaluate the limita-

tions of Cyrene under such conditions (Table 2).
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Figure 2: Aldol products 4a and 4b and single crystal X-ray structure of 4b.

Table 2: Evaluation of the base sensitivity of Cyrene.a

Entry Base Temp. (°C) Reaction (Y/N)b

1 KOAc
25 N
50 Y

100 Y

2 Pyridine
25 N
50 Y

100 Y

3 K2CO3

25 Y
50 Y

100 Y

4 DIPEA
25 N
50 N

100 Y

5 Cs2CO3

25 Y
50 Y

100 Y

6 Et3N
25 N
50 N

100 Y

7 K3PO4

25 Y
50 Y

100 Y

8 DBU
25 Y
50 Y

100 Y

9 KOH
25 Y
50 Y

100 Y

10 t-BuOK
25 Y
50 Y

100 Y

11 NaH
25 Y
50 Y

100 Y
aReaction conditions: base (0.07 mmol) and Cyrene (0.5 mL) stirred at
the indicated temeperature for 24 h before analysis by TLC and
1H NMR . bY = reaction occurs, N = no reaction. See Supporting Infor-
mation File 1.

Under these specific reaction conditions, with the exception of

Et3N and DIPEA, there was a clear base sensitivity displayed

by Cyrene in the presence of all bases when the temperature

was elevated above 25 °C. Organic bases such as pyridine

(Table 2, entry 2), DIPEA (Table 2, entry 4), and Et3N (Table 2,

entry 6) were tolerated at 25 °C with DIPEA and Et3N also

tolerated at 50 °C. DBU, however, was not tolerated at any tem-

perature (Table 2, entry 8). With the exception of KOAc

(Table 2, entry 1), all inorganic bases resulted in reaction with

the solvent at room temperature (Table 2, entries 3, 5, 7, and

9–11). The extent of the reaction varied from the generation of

additional components, such as 4a and 4b, to gelation or com-

plete solidification of the reaction mixture. However, in a

moderately basic reaction mixture (e.g., using Et3N) at mild

reaction temperatures this issue could be entirely avoided. As

such, optimisation of the Sonogashira process allowed com-

plete conversion and 96% isolated yield in 1 h at 30 °C

(Table 1, entry 8). Importantly, the Cyrene-based system com-

pared very favourably upon comparison with standard solvents

(THF and DMF; Table 1, entries 9 and 10, respectively).

Continuing with the primary investigation and with an opti-

mised set of reaction conditions, we sought to explore the

generality of Cyrene in the Sonogashira cross-coupling

(Scheme 2). Significantly, a broad range of functionalised aryl

and heteroaryl iodides were tolerated (Scheme 2a).

In addition, electron-deficient aryl bromides were accommo-

dated, although with some variation in yield (3c, 3l, 3o, 3n).

Functionality on the alkyne component was also typically well

tolerated (Scheme 2b). While 3i and 3j required an extended

reaction time, this was a substrate-specific problem for the use

of 2a with these ortho-substituted aryl iodides that was not

apparent for other alkyne/ortho-substituted iodoarene combina-

tions (Scheme 2c).

Judicious selection of reacting components also enabled the de-

velopment of a useful Cacchi-type annulation (Scheme 3)
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Scheme 2: Cyrene-based Sonogashira cross-coupling: Substrate scope. Isolated yields. aYield using DMF as solvent. b2 equiv of Et3N used. c24 h
reaction time.

[42,43]. Specifically, employing ortho-amino (5) or ortho-

hydroxyaryl iodides (6) in the Sonogashira process generated an

alkyne intermediate that, upon increasing the reaction tempera-

ture from 30 °C to 60 °C, could undergo 5-endo-dig cyclisation

to forge functionalised and pharmaceutically relevant indole,

benzofuran, and aza-indole scaffolds in a single operation

(7a–f) [48-52].

Finally, with the viewpoint of generality of DMF substitution

by Cyrene, the base/temperature sensitivity issue may have

potential implications for further applications of Cyrene within

well-used organic transformations. For example, the majority of

many other standard cross-coupling processes employ inorgan-

ic or organic bases and heat (e.g., Suzuki–Miyaura, Heck). Ac-

cordingly, Cyrene may be projected to be incompatible with
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Scheme 3: Cacchi-type annulation of o-amino/hydroxy iodoarenes. Isolated yields. aYield using DMF as solvent.

standard conditions for these reactions and its use would neces-

sitate base-free or exceptionally mildly basic reaction condi-

tions. In contrast, amide-bond formation is the most practiced

reaction in the pharmaceutical industry [4] and these are

routinely performed in DMF at room temperature in the pres-

ence of organic bases [53]. As such, Cyrene may offer consider-

able potential in this area. However, additional work will be re-

quired to validate the practicality of Cyrene as a viable DMF

replacement in these applications.

Conclusion
In summary, we have developed a mild and robust method for

the Sonogashira reaction, employing the bio-derived and sus-

tainable alternative to DMF, Cyrene. In addition, we have

shown the capacity for extension of the utility of this new sol-

vent towards enabling the cascade synthesis of functionalised

indoles and benzofurans via a Cacchi-type annulation. Perhaps

more importantly, we have documented some of the limitations

of the use of Cyrene as a solvent, providing guidance emerging

in relation to the thermal and chemical (base) stabilities of this

promising green solvent.

Supporting Information
Supporting Information File 1
Experimental procedures, analytical data, copies of NMR

spectra, and single X-ray crystal diffraction data of 4b.
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1. General  

All reagents and solvents were obtained from commercial suppliers and were used without further 

purification unless otherwise stated. Purification was carried out according to standard laboratory 

methods.
1 

 

1.1 Purification of solvents 

Cyrene was supplied directly by Circa and used as obtained. DMF was dried by heating to reflux over 

previously activated 4 Å molecular sieves and distilling under vacuum before being purged with, and 

stored under N2 in a septum-sealed oven-dried flask over previously activated 4 Å molecular sieves. 

THF was obtained from a PureSolv SPS-400-5 solvent purification system and transferred to and 

stored in a septum-sealed oven-dried flask over previously activated 4 Å molecular sieves and purged 

with and stored under N2. CH2Cl2, Et2O, EtOAc, MeCN, and petroleum ether 40–60 °C for 

purification purposes were used as obtained from suppliers without further purification. 

 

1.2 Purification and drying of bases 

Et3N was dried by heating to reflux over previously activated 4 Å molecular sieves and distilling 

under vacuum before being purged with, and stored under N2 in a septum-sealed oven-dried flask over 

previously activated 4 Å molecular sieves. Inorganic bases were dried in a Heraeus Vacutherm oven 

at 60 °C under vacuum for a minimum of 24 h before use. 

 

1.3 Experimental details 

Reactions were carried out using conventional glassware (preparation of S1 and S2) or in sealed 5 mL 

microwave vials (optimization reactions and reactions for Schemes 2 and 3). The glassware was oven-

dried (150 °C) and purged with N2 before use. Purging refers to a vacuum/nitrogen-refilling 

procedure. Room temperature was generally ca. 18 °C. Reactions were carried out at elevated 

temperatures using a temperature-regulated hotplate/stirrer. 

 

1.4 Purification of products 

Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator 

UV254. These were analyzed under 254 nm UV light or developed using a vanillin solution. Normal 

phase flash chromatography was carried out using ZEOprep 60 HYD 40-63 µm silica gel. Reverse 

phase flash chromatography was carried out using IST Isolute C18 cartridges. Strong cation-exchange 

purification was carried out using an SCX cartridge.  

 

1.5 Analysis of products 

Fourier transformed infrared (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine. 
1
H, 

13
C, 

19
F and 

11
B NMR spectra were obtained on a Bruker DRX 500 spectrometer (Avance III HD 

console, Ascend 500 MHz magnet, BBO smart probe) at 500 MHz, 126 MHz, 471 MHz and 160 

MHz, respectively. 
1
H NMR for the evaluation of the base sensitivity were obtained on a Bruker AV 

400 at 400 MHz. Chemical shifts are reported in ppm and coupling constants are reported in Hz with 

CDCl3 referenced at 7.26 (
1
H) and 77.0 ppm (

13
C) and DMSO-d6 referenced at 2.50 (

1
H) and 39.5 

(
13

C). High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass 

Spectrometry Facility at Swansea University or at Glasgow University’s School of Chemistry Mass 

Spectrometry Service. Crystal data was obtained at 123(2) K using an Oxford Diffraction Gemini 

instrument and monochromatic Mo radiation. 
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2. General experimental procedures 

General Procedure A: Optimized conditions 

 

 

For example, synthesis of 1,2-diphenylethyne, 3a. 

To an oven-dried 5 mL microwave vessel was added Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %) 

and CuI (1.9 mg, 0.01 mmol, 4 mol %). The vessel was then capped and purged with N2 before 

addition of Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), iodobenzene (27.9 µL, 

0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). The reaction mixture 

was heated to 30 °C and maintained at this temperature with stirring for 1 h before the vessel was 

vented, and decapped. The solution was then diluted with EtOAc (10 mL), and washed with water (2 

× 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and 

concentrated under reduced pressure to give a yellow oil, which was purified by flash chromatography 

(silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white solid (44.5 mg, 

quant.). 

max (solid): 3068, 1603, 1495, 1446 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.55 (dd, J = 7.2, 1.9 Hz, 4H), 7.36 (m, 6H). 

13
C NMR (CDCl3, 126 MHz): δ 131.6, 128.4, 128.3, 123.3, 89.4. 

HRMS: exact mass calculated for [M] (C14H10) requires m/z 178.0782, found m/z 178.0784. 

Characterisation data is consistent with literature reported values.
2 

 

General Procedure B: Synthesis of indoles and benzofuran 

 

 

For example, synthesis of 2-phenyl-1-tosyl-1H-indole (7a). 

To an oven-dried 5 mL microwave vessel was added Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %),  

CuI (1.9 mg, 0.01 mmol, 4 mol %), and N-(2-iodophenyl)-4-methylbenzenesulfonamide (93 mg, 0.25 

mmol, 1 equiv). The vessel was then capped and purged with N2 before addition of Cyrene (0.5 mL, 

0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

The reaction mixture was heated to 30 °C and maintained at this temperature with stirring for 1 h. The 

reaction was subsequently heated to 60 °C and maintained at this temperature for 6 h before the vessel 

was vented and decapped. The solution was then diluted with EtOAc (10 mL), and washed with water 

(2 × 20 mL) and brine (2 × 20 mL). The organics were then passed through a hydrophobic frit and 

concentrated under reduced pressure to give a yellow oil, which was purified by flash chromatography 

(silica gel, 0–15% EtOAc in petroleum ether) to afford the title compound as a white solid (78.4 mg, 

90%). 

max (solid): 3073, 1368, 1169 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.33 (d, J = 8.4 Hz, 1H), 7.54–7.50 (m, 2H), 7.45 (t, J = 8.2 Hz, 4H), 

7.38 (t, J = 7.4 Hz, 1H), 7.31–7.28 (m, 3H), 7.06 (d, J = 8.1 Hz, 2H), 6.56 (s, 1H), 2.31 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 144.5, 142.2, 138.3, 134.7, 132.4, 130.7, 130.4, 129.2, 128.7, 127.5, 

126.8, 124.8, 124.3, 120.7, 116.7, 113.4, 21.5. 

HRMS: exact mass calculated for [M+H]
+
 (C21H18NO6S) requires m/z 348.1058, found m/z 348.1061. 

Characterisation data is consistent with literature reported values.
3 
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3. Reaction optimization data 

3.1. Variation of concentration 

Reactions were carried out according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 

mmol, 2 mol %), CuI (1.9 mg, 0.01 mmol, 4 mol %), Cyrene (X M), Et3N (104 µL, 0.75 mmol, 3 

equiv), iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After stirring at 20 °C for 5 h, the reaction was subjected to the purification outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the desired compound as a 

white solid. 

 

Entry Concentration (M) Volume (mL) Isolated yield (%) 

1 0.3 0.83 98 

2 0.1 2.5 94 

3 0.5 0.5 100 

 

3.2. Variation of the base 

Reactions were carried out according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 

mmol, 2 mol %), CuI (1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Base (X equiv), 

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After stirring at 20 °C for 5 h, the reaction was subjected to the purification outlined in the General 

Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the desired compound as a white solid. 

 

Entry Base (mass) Equiv Isolated yield (%) 

1
a K3PO4 (159 mg) 3 - 

2
a Cs2CO3 (245 mg) 3 - 

3 DIPEA (97 mg) 3 85 

4 Pyridine (59 mg) 3 0 

5 Et3N (28 mg) 1.1 98 

6 Et3N (38 mg) 1.5 94 

7 Et3N (51 mg) 2 92 
a
 Formation of solid Cyrene dimer – product was not isolated 

 

3.3. Variation of time and temperature 

Reactions were carried out according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 

mmol, 2 mol %), CuI (1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 

mmol, 1.1 equiv), iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 

mmol, 1.05 equiv). After stirring at X °C for X h, the reaction was subjected to the purification 

outlined in the General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the desired 

compound as a white solid. 

 

Entry Temp. (°C) Time (h) Isolated yield (%) 

1 20 1 86 

2 20 3 94 

3 20 5 98 

4 25 1 91 

5 30 1 96 
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3.4. Variation of solvent 

Reactions were carried out according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 

mmol, 2 mol %), CuI (1.9 mg, 0.01 mmol, 4 mol %), solvent (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 

mmol, 1.1 equiv), iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 

mmol, 1.05 equiv). After stirring at 30 °C for 1 h, the reaction was subjected to the purification 

outlined in the General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the desired 

compound as a white solid. 

 

Entry Solvent Isolated yield (%) 

1 Cyrene 96 

2 THF 81 

3 DMF 87 

 

4. Base sensitivity study 

Base (0.07 mmol) was added to a test tube and Cyrene (0.5 mL) was added. The tube was then capped 

and the mixture stirred at X °C. After 24 h the reaction mixture was sampled and analysed by TLC 

(60% EtOAc in petroleum ether) and 
1
H NMR and the resulting spectrum compared with that of 

Cyrene.  

 

Base 
Mass 

(mg) 

Temperature  

(°C) 

Reaction 

(Y/N) 

Solid 

Formation 

KOAc 7 

25 N x 

50 N x 

100 N x 

Pyridine 6 

25 N x 

50 N x 

100 N x 

K2CO3 10 

25 N x 

50 N x 

100 Y x 

DIPEA 9 

25 N x 

50 N x 

100 N x 

Cs2CO3 23 

25 Y √ 

50 Y √ 

100 Y √ 

Et3N 7 

25 N x 

50 N x 

100 N x 

K3PO4 15 

25 Y x 

50 Y √ 

100 Y √ 

DBU 11 

25 Y √ 

50 Y √ 

100 Y √ 

KOH 4 25 Y √ 
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50 Y √ 

100 Y √ 

t
BuOK 8 

25 Y √ 

50 Y √ 

100 Y √ 

NaH 2 

25 Y √ 

50 Y √ 

100 Y √ 

 

5. Compound characterisation data 

5.1. Preparation of intermediates 

S1: N-(5-Chloro-2-iodophenyl)-4-methylbenzenesulfonamide 

 
To a round-bottomed flask charged with 5-chloro-2-iodoaniline (1 g, 3.95 mmol, 1 equiv) was added 

a solution of 1:1 pyridine in CH2Cl2 (0.7 M, 40 mL) and the reaction mixture was cooled to 0 °C. 4-

Methylbenzenesulfonyl chloride (750 mg, 3.95 mmol, 1 equiv) was added portionwise, and the 

reaction mixture was allowed to slowly warm to room temperature and then stirred for 24 h. Upon 

completion of the reaction, water (80 mL) and CH2Cl2 (80 mL) were added. The reaction mixture was 

separated and the organics were washed with 1 N NaOH (2 × 40 mL), 1 N HCl (2×40 mL), and brine 

(2 × 40 mL). The organics were then passed through a hydrophobic frit and concentrated under 

reduced pressure to give a crude residue, which was purified by flash chromatography (silica gel, 0–

12% EtOAc in petroleum ether) to afford the title compound as an off white solid (890 mg, 52%). 
1
H NMR (CDCl3, 500 MHz): δ 7.72–7.65 (m, 3H), 7.57 (d, J = 8.5 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 

6.88–6.80 (m, 2H), 2.42 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 144.1, 139.1, 138.1, 135.1, 135.1, 129.4, 127.0, 126.4, 121.4, 88.3, 

21.2.  

Characterisation data is consistent with literature reported values.
4 

 

S2: N-(3-Iodo-5-nitropyridin-2-yl)-4-methylbenzenesulfonamide 

 
Prepared in two steps from 3-iodo-5-nitropyridin-2-amine: 

Step 1: To a 25 mL three-necked flask charged with 5-nitropyridin-2-amine (1 g, 7.1 mmol, 1 equiv), 

was added concentrated sulfuric acid (12 mL, 0.6 M) and potassium iodate (653 mg, 2.8 mmol, 0.4 

equiv) portionwise, before subsequent heating to 200 °C. Potassium iodide (1.18 g, 7.1 mmol, 1 

equiv) was then added dropwise as an aqueous solution (4 mL), and the reaction mixture was stirred 

at 200 °C for 1.5 h. Upon completion, the reaction mixture was allowed to cool to room temperature 

before the slow addition of saturated sodium bicarbonate solution (20 mL) and EtOAc (20 mL). The 

reaction mixture was separated and the organics were washed with an aqueous solution of saturated 

Na2S2O3 (2 × 30 mL). The organics were then passed through a hydrophobic frit and concentrated 

under reduced pressure to give a yellow solid, 3-iodo-5-nitropyridin-2-amine, which was used without 

further purification (1.64 g, 87 %). 

 

Step 2: To a 100 mL round-bottomed flask charged with 3-iodo-5-nitropyridin-2-amine (1.29 g, 4.86 

mmol, 1 equiv) was added THF (40 mL, 0.13 M) and the reaction mixture was cooled to 0 °C. 

NHTs

I

Cl

N NHTs

IO2N
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Sodium hydride (224 mg, 9.72 mmol, 2 equiv) was added portionwise and the reaction mixture was 

stirred at 0 °C for 20 minutes. 4-Methylbenzenesulfonyl chloride (1.09 g, 4.86 mmol, 1 equiv) was 

added portion wise, and the reaction mixture was allowed to slowly warm to room temperature and 

was stirred for 18 h. Upon completion of the reaction, water (50 mL) and CH2Cl2 (50 mL) were added 

and the reaction mixture was separated and the organics washed with 1 M NaOH (2 × 50 mL), 1 M 

HCl (2 × 50 mL), and brine (2 × 50 mL). The organics were passed through a hydrophobic frit and 

concentrated under reduced pressure to give a crude residue, which was purified by flash 

chromatography (silica gel, 0–30% EtOAc in petroleum ether) to afford the title compound as a 

yellow solid (1.43 g, 70%). 

max (solid): 3581, 3268, 3064, 2919, 1571, 1444, 1320 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 8.66 (d, J = 2.6 Hz, 1H), 8.40 (d, J = 2.5 Hz, 1H), 7.74 (d, J = 8.1 

Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 3.35 (bs, 1H), 2.32 (s, 3H). 
13

C NMR (DMSO-d6, 126 MHz): δ 161.9, 145.0, 142.3, 140.9, 140.7, 134.7, 128.9, 127.4, 86.7, 21.4. 

HRMS: exact mass calculated for [M+H]
+
 (C12H11IN3O4S) requires m/z 419.9509, found m/z 

419.9510. 

Characterisation data is consistent with literature reported values.
4 

 

5.2. Products from Table 1 

3a: 1,2-Diphenylethyne 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 1 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white solid 

(44.5 mg, quant.). 

max (solid): 3068, 1603, 1495, 1446 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.55 (dd, J = 7.2, 1.9 Hz, 4H), 7.36 (m, 6H). 

13
C NMR (CDCl3, 126 MHz): δ 131.6, 128.4, 128.3, 123.3, 89.4. 

HRMS: exact mass calculated for [M] (C14H10) requires m/z 178.0782, found m/z 178.0784. 

Characterisation data is consistent with literature reported values.
2 

 

5.3. Products from Scheme 2a 

3b: 1-Fluoro-4-(phenylethynyl)benzene 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 4-

fluoro-iodobenzene (28.8 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white 

solid (48.8 mg, quant.). 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), DMF (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 4-fluoro-

iodobenzene (28.8 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 
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After 1 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white solid 

(46.9 mg, 96%). 

max (solid): 2921, 1595, 1508, 1217 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.55–7.50 (m, 4H), 7.38–7.33 (m, 3H), 7.05 (t, J = 8.7 Hz, 2H). 

13
C NMR (CDCl3, 126 MHz): δ 162.5 (d, 

1
JCF = 249.6 Hz), 133.5 (d, 

3
JCF = 8.2 Hz), 131.6, 128.4, 

128.4, 123.3, 119.4 (d, JCF  = 3.4 Hz), 115.7 (d, 
2
JCF = 22.4 Hz), 89.1, 88.3. 

19
F NMR (CDCl3, 471 MHz): δ -110.98. 

HRMS: exact mass calculated for [M] (C14H9F) requires m/z 196.0688, found m/z 196.0689. 

Characterisation data is consistent with literature reported values.
5 

 

3c: 1-Nitro-4-(phenylethynyl)benzene 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 4-

nitro-iodobenzene (62.3 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as an off 

white solid (48.8 mg, quant.). 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 4-

nitro-bromobenzene (50.5 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as an off 

white solid (14.6 mg, 28%). 

max (solid): 3107, 2926, 2217, 1593, 1511 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.22 (d, J = 8.9 Hz, 2H), 7.67 (d, J = 8.9 Hz, 2H), 7.58–7.54 (m, 2H), 

7.39 (dd, J = 5.3, 1.8 Hz, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 147.0, 132.3, 131.9, 130.4, 129.3, 128.6, 123.7, 122.1, 94.7, 87.6. 

HRMS: exact mass calculated for [M+H]
+
 (C14H10NO2) requires m/z 224.0712, found m/z 224.0714. 

Characterisation data is consistent with literature reported values.
5 

 

3d: 1-Methoxy-4-(phenylethynyl)benzene 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 4-

iodoanisole (58.5 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 1 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–15% Et2O in petroleum ether) to afford the title compound as an off white 

solid (51.9 mg, quant.). 

max (solid): 3014, 2841, 2217, 1509 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.51 (dt, J = 3.9, 2.1 Hz, 2H), 7.49–7.46 (m, 2H), 7.36–7.29 (m, 3H), 

6.88 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H). 
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13
C NMR (CDCl3, 126 MHz): δ 159.6, 133.1, 131.5, 128.3, 127.9, 123.6, 115.4, 114.0, 89.4, 88.1, 

55.3. 

HRMS: exact mass calculated for [2M+H]
+
 (C30H25O2) requires m/z 417.1855, found m/z 417.1847. 

Characterisation data is consistent with literature reported values.
5 

 

3e: 4-(Phenylethynyl)phenol 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (70 µL, 0.5 mmol, 2 equiv), 4-

iodophenol (55 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 1 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–10% Et2O in petroleum ether) to afford the title compound as an off white 

solid (32.6 mg, 68%). 

max (solid): 3412, 3059, 1513, 1254 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.51 (dd, J = 7.7, 1.4 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.33 (m, 3H), 

6.81 (d, J = 8.6 Hz, 2H). 
13

C NMR (CDCl3, 126 MHz): δ 155.7, 133.3, 131.5, 128.3, 127.9, 123.6, 115.7, 115.5, 89.2, 88.1. 

HRMS: exact mass calculated for [M+H]
+
 (C15H13O) requires m/z 209.0966, found m/z 209.1008. 

Characterisation data is consistent with literature reported values.
6 

 

3f: 1-Methoxy-3-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 3-

iodoanisole (29.8 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 1 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a yellow oil (51.4 

mg, 99%). 

max (liquid film): 2937, 2838 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.57–7.53 (m, 2H), 7.35 (dd, J = 4.9, 2.4 Hz, 3H), 7.27 (t, J = 7.9 Hz, 

1H), 7.15 (d, J = 7.6 Hz, 1H), 7.08 (s, 1H), 6.91 (dd, J = 8.3, 2.0 Hz, 1H), 3.83 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 159.4, 131.7, 129.4, 128.4, 128.3, 124.3, 124.2, 123.2, 116.4, 114.9, 

89.3, 89.2, 55.3. 

HRMS: exact mass calculated for [M+Na]
+
 (C14H11O) requires m/z 195.0810, found m/z 195.0813. 

Characterisation data is consistent with literature reported values.
2 

 

3g: 1-Chloro-3-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 3-
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chloro-iodobenzene (30.9 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a yellow 

oil (53.5 mg, 82%). 

max (liquid film): 3064, 2224, 884 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.55–7.51 (m, 3H), 7.41 (dt, J = 7.3, 1.4 Hz, 1H), 7.36 (dd, J = 4.9, 

1.7 Hz, 3H), 7.31 (dt, J = 8.0, 1.5 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H). 
13

C NMR (CDCl3, 126 MHz): δ 134.4, 131.9, 131.6, 129.9, 129.8, 128.8, 128.7, 128.6, 125.2, 122.9, 

90.7, 88.1. 

HRMS: exact mass calculated for [M] (C14H9Cl) requires m/z 212.0393, found m/z 212.0395. 

Characterisation data is consistent with literature reported values.
7 

 

3h: 1-Nitro-3-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 3-

nitro-iodobenzene (62.3 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white 

solid (55.2 mg, 99%). 

max (solid): 3083, 2213, 1517, 1349 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.40–8.37 (m, 1H), 8.19 (m, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.56 (m, 

3H), 7.40 (m, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 148.2, 137.2, 131.8, 129.4, 129.1, 128.5, 126.4, 125.2, 122.9, 122.2, 

91.9, 86.9. 

HRMS: exact mass calculated for [M+H]
+
 (C14H10NO2) requires m/z 224.0712, found m/z 224.0710. 

Characterisation data is consistent with literature reported values.
5 

 

3i: 1-Methyl-2-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodotoluene (31.8 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 24 h, the reaction mixture was subjected to purification by reverse phase chromatography (C18 

cartridge, 20–65% MeCN in water) to afford the title compound as a yellow oil (40 mg, 83%). 

max (liquid film): 3023, 2924, 2855, 2217, 1496 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.56–7.53 (m, 2H), 7.50 (d, J = 7.5 Hz, 1H), 7.35 (m, 3H), 7.24 (d, J = 

3.9 Hz, 2H), 7.17 (m, 1H), 2.52 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 140.3, 131.9, 131.7, 129.6, 128.5, 128.5, 128.3, 125.7, 123.7, 123.2, 

93.5, 88.5, 20.9. 

HRMS: exact mass calculated for [M] (C15H12) requires m/z 192.0939, found m/z 192.0935. 

Characterisation data is consistent with literature reported values.
5 
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3j: 1-Chloro-2-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

chloro-iodobenzene (30.5 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 24 h, the reaction mixture was subjected to purification by reverse phase 

chromatography (C18 cartridge, 20–65% MeCN in water) to afford the title compound as a yellow oil 

(54.9 mg, quant.). 

max (liquid film): 3060, 2926, 2224, 1495 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 7.69 (dd, J = 7.5, 1.7 Hz, 1H), 7.62–7.58 (m, 3H), 7.48–7.41 (m, 

5H). 
13

C NMR (DMSO-d6, 126 MHz): δ 135.1, 133.8, 131.9, 130.9, 129.9, 129.8, 129.3, 127.9, 122.4, 

122.3, 94.8, 86.4. 

HRMS: exact mass calculated for [M] (C14H9Cl) requires m/z 212.0393, found m/z 212.0385. 

Characterisation data is consistent with literature reported values.
2 

 

3k: 2-(Phenylethynyl)thiophene 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodothiophene (27.6 µL, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as an off 

white solid (41.4 mg, 92%). 

max (liquid film): 3088, 2204 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.54–7.50 (m, 2H), 7.35 (dd, J = 5.2, 1.9 Hz, 3H), 7.31–7.28 (m, 2H), 

7.02 (dd, J = 5.0, 3.8 Hz, 1H). 
13

C NMR (CDCl3, 126 MHz): δ 131.9, 131.4, 128.4, 128.4, 127.3, 127.1, 123.4, 122.9, 93.0, 82.6. 

HRMS: exact mass calculated for [M] (C12H8S) requires m/z 184.0347, found m/z 184.0348. 

Characterisation data is consistent with literature reported values.
2 

 

3l: 2-Nitro-5-(phenylethynyl)pyridine 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 5-

bromo-2-nitropyridine (50.8 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–15% Et2O in petroleum ether) to afford the title compound as a white 

solid (51.4 mg, 92%). 

max (solid): 3058, 2219, 1532, 1348 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.73 (d, J = 1.6 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.10 (dd, J = 8.4, 

2.0 Hz, 1H), 7.58 (dd, J = 7.7, 1.4 Hz, 2H), 7.44 – 7.38 (m, 3H). 
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13
C NMR (CDCl3, 126 MHz): δ 154.8, 151.1, 141.8, 131.9, 129.8, 128.7, 126.7, 121.4, 117.7, 97.9, 

84.2. 

HRMS: exact mass calculated for [M+H]
+
 (C13H9N2O2) requires m/z 225.0664, found m/z 225.0670. 

 

3m: 5-Chloro-2-(phenylethynyl)pyridine 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 3-

chloro-6-iodopyridine (59.8 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–5% Et2O in petroleum ether) to afford the title compound as a white 

solid (54.5 mg, quant.). 

max (solid): 3040, 2221, 1493, 1459 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.58 (d, J = 1.8 Hz, 1H), 7.67 (dd, J = 8.4, 2.4 Hz, 1H), 7.60 (dd, J = 

7.5, 1.9 Hz, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.40–7.36 (m, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 149.1, 141.5, 136.0, 132.1, 131.3, 129.2, 128.5, 127.7, 121.9, 90.4, 

87.6. 

HRMS: exact mass calculated for [M+H]
+
 (C13H9NCl) requires m/z 214.0418, found m/z 214.0421. 

 

3n: 2-(Phenylethynyl)-1,8-naphthyridine 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

bromo-1,8-naphthyridine (52.3 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–65% Et2O in petroleum ether) to afford the title compound as a white 

solid (54.3 mg, 94%). 

max (solid): 3049, 3008, 2211, 1601, 1498 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 9.15 (s, 1H), 8.17 (d, J = 8.2 Hz, 2H), 7.69–7.64 (m, 3H), 7.48 (dd, J 

= 7.7, 3.9 Hz, 1H), 7.43–7.37 (m, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 156.1, 154.3, 146.9, 137.2, 136.6, 132.4, 129.5, 128.5, 125.4, 122.3, 

121.9, 91.6, 89.3. Quaternary carbon at ring junction not observed. 

HRMS: exact mass calculated for [M+H]
+
 (C16H11N2) requires m/z 231.0922, found m/z 231.0923. 

 

3o: 2-Chloro-6-(phenylethynyl)pyridine 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.5 mmol, 1.1 equiv), 2-bromo-

6-chloropyridine (48 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 
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General Procedure (silica gel, 0–10% Et2O in petroleum ether) to afford the title compound as an off 

white solid (52.3 mg, quant.). 

max (solid): 3059, 2960, 2226, 1577, 1435 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.63 (t, J = 7.8 Hz, 1H), 7.60–7.56 (m, 2H), 7.44 (d, J = 7.6 Hz, 1H), 

7.37 (q, J = 5.7 Hz, 3H), 7.28 (d, J = 8.0 Hz, 1H). 
13

C NMR (CDCl3, 126 MHz): δ 151.4, 143.6, 138.7, 132.1, 129.3, 128.5, 125.7, 123.6, 121.8, 90.7, 

87.5. 

HRMS: exact mass calculated for [M+H]
+
 (C13H9NCl) requires m/z 214.0424, found m/z 214.0427. 

1
H NMR and HRMS data is consistent with literature reported values.

8 

3p: 1-Methyl-5-(phenylethynyl)-1H-indole  

 

 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (2.6 mg, 0.004 mmol, 2 mol %), CuI 

(1.4 mg, 0.007 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (28 µL, 0.20 mmol, 1.1 equiv), 5-

iodo-1-methyl-1H-indole (47 mg, 0.18 mmol, 1 equiv), and phenylacetylene (21 µL, 0.19 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–10% Et2O in petroleum ether) to afford the title compound as an off 

white solid (27.7 mg, 67%). 

max (solid): 3051, 2926, 2208, 1597, 1496 cm
-1

.  
1
H NMR (CDCl3, 500 MHz): δ 7.85 (s, 1H), 7.57–7.54 (m, 2H), 7.41 (dd, J = 8.5, 1.2 Hz, 1H), 7.35 

(t, J = 7.2 Hz, 2H), 7.30 (t, J = 8.7 Hz, 2H), 7.08 (d, J = 3.1 Hz, 1H), 6.49 (d, J = 2.7 Hz, 1H), 3.80 (s, 

3H). 
13

C NMR (CDCl3, 126 MHz): δ 136.4, 131.5, 129.8, 128.4, 128.3, 127.7, 125.2, 124.8, 124.1, 113.8, 

109.3, 101.3, 91.2, 87.0, 32.9. 

HRMS: exact mass calculated for [M] (C17H13N) requires m/z 231.1048, found m/z 231.1057. 

Characterisation data is consistent with literature reported values.
9 

 

5.4. Products from Scheme 2b 

3q: Phenylethynylboronic acid, MIDA ester 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester (47.5 mg, 0.263 

mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined 

in the General Procedure (silica gel, 0–60% EtOAc in petroleum ether) to afford the title compound as 

an off white solid (61.3 mg. 95%). 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), DMF (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester (47.5 mg, 0.263 

mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined 
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in the General Procedure (silica gel, 0-60% EtOAc in petroleum ether) to afford the title compound as 

an off white solid (61.2 mg. 95%). 

max (solid): 3025, 2198, 1768, 1493 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 7.51–7.48 (m, 2H), 7.42–7.37 (m, 3H), 4.32 (d, J = 17.1 Hz, 2H), 

4.15 (d, J = 17.1 Hz, 2H), 3.08 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 169.1, 132.0, 129.4, 129.1, 129.1, 122.9, 99.9, 61.9, 48.4. Carbon 

bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 6.24. 

HRMS: exact mass calculated for [M+NH4]
+
 (C13H16BN2O4) requires m/z 275.1202, found m/z 

275.1198. 

Characterisation data is consistent with literature reported values.
10 

3r: Trimethyl(phenylethynyl)silane 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and ethynyltrimethylsilane (37 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as a 

colourless oil (44 mg, quant.). 

max (liquid film): 2962, 2161, 1491, 1251 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.50–7.47 (m, 2H), 7.34–7.29 (m, 3H), 0.27 (s, 9H). 

13
C NMR (CDCl3, 126 MHz): δ 131.9, 128.5, 128.2, 123.1, 105.1, 94.1, -0.01. 

HRMS: exact mass calculated for [M] (C11H14Si) requires m/z 174.0865, found m/z 174.0866. 

Characterisation data is consistent with literature reported values.
11 

 

3s: 4-Phenylbut-3-yn-1-yl 4-methylbenzenesulfonate 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 3-butynyl-p-toluenesulfonate (46.3 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0-30% EtOAc in petroleum ether) to afford the title compound as a 

colourless oil (60.7 mg, 81%). 

max (liquid film): 2924, 2980, 1493, 1361, 1176 cm
-1

.  
1
H NMR (CDCl3, 500 MHz): δ 7.79 (d, J = 8.3 Hz, 2H), 7.32–7.28 (m, 3H), 7.28–7.23 (m, 4H), 4.16 

(t, J = 7.0 Hz, 2H), 2.75 (t, J = 7.0 Hz, 2H), 2.39 (s, 3H). 
 13

C NMR (CDCl3, 126 MHz): δ 144.9, 132.9, 131.7, 129.9, 128.2, 128.2, 127.9, 122.9, 83.8, 82.7, 

67.8, 21.6, 20.4. 

HRMS: exact mass calculated for [M+Na]
+
 (C17H16O3SNa) requires m/z 323.0712, found m/z 

323.0702. 

Characterisation data is consistent with literature reported values.
12 

 

3t: N,N-Dimethyl-3-phenylprop-2-yn-1-amine 
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Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and dimethyl(prop-2-yne)amine (28 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to purification by SCX (MeOH in 3M 

ammonium MeOH) to afford the title compound as a yellow oil (23.6 mg, 60%). 

max (liquid film): 3058, 2941, 2824, 2775, 1690, 1493 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.46–7.42 (m, 2H), 7.32–7.28 (m, 3H), 3.49 (s, 2H), 2.39 (s, 6H). 

13
C NMR (CDCl3, 126 MHz): δ 131.7, 128.3, 128.1, 123.2, 85.4, 84.4, 48.6, 44.2. 

HRMS: exact mass calculated for [M+H]
+
 (C11H14N) requires m/z 160.1126, found m/z 160.1125. 

Characterisation data is consistent with literature reported values.
13 

 

3u: Pent-1-yn-1-ylbenzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 1-pentyne (25.8 µL, 0.263 mmol, 1.05 equiv). After 

1 h, the reaction mixture was subjected to the purification method outlined in the General Procedure 

(silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as a yellow oil (34.5 mg, 

96%). 

max (liquid film): 3058, 2963, 2934, 2872, 2237, 1601, 1491 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.32 (dd, J = 7.5, 1.9 Hz, 2H), 7.22–7.17 (m, 3H), 2.31 (t, J = 7.0 Hz, 

2H), 1.56 (h, J = 7.3 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 131.6, 128.2, 127.5, 124.1, 90.3, 80.7, 22.2, 21.4, 13.6. 

HRMS: exact mass calculated for [M] (C11H12) requires m/z 144.0939, found m/z 144.0941. 

Characterisation data is consistent with literature reported values.
14 

 

3v: (Cyclopropylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and ethynylcyclopropane (22 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as a 

colourless oil (30.3 mg, 85%). 

max (liquid film): 3034, 2924, 2219, 1597, 1513 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.42–7.38 (m, 2H), 7.30–7.26 (m, 3H), 1.47 (m, 1H), 0.91–0.87 (m, 

2H), 0.83 (m, 2H). 
13

C NMR (CDCl3, 126 MHz): δ 131.6, 128.1, 127.4, 123.9, 93.4, 75.8, 8.6, 0.1. 

Characterisation data is consistent with values reported in the literature.
15 
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3w: Prop-1-yne-1,3-diyldibenzene 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 3-phenyl-1-propyne (32.6 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as a 

colourless oil (38.7 mg, 81%). 

max (liquid film): 3064, 3032, 2924, 1601, 1493 cm
1
. 

1
H NMR (CDCl3, 500 MHz): δ 7.46 (dd, J = 6.5, 3.0 Hz, 2H), 7.44 (d, J = 7.4 Hz, 2H), 7.36 (t, J = 7.6 

Hz, 2H), 7.32–7.29 (m, 3H), 7.26 (dd, J = 8.8, 5.8 Hz, 1H), 3.85 (s, 2H). 
 13

C NMR (CDCl3, 126 MHz): δ 136.8, 131.7, 128.6, 128.3, 127.9, 127.8, 126.7, 123.7, 87.5, 82.7, 

25.8. 

HRMS: exact mass calculated for [M] (C15H12) requires m/z 192.0939, found m/z 192.0932. 

Characterisation data is consistent with literature reported values.
14 

 

3x: (Cyclohex-1-en-1-ylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 1-ethynylcyclohexene (30.8 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as an off 

white solid (46.3 mg, quant.). 

max (liquid film): 3062, 2935, 2865, 2204, 1716, 1670 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.39 (dd, J = 7.8, 1.6 Hz, 2H), 7.28–7.23 (m, 3H), 6.20–6.16 (m, 1H), 

2.20 (dd, J = 8.1, 6.0 Hz, 2H), 2.13–2.09 (m, 2H), 1.68–1.63 (m, 2H), 1.61–1.56 (m, 2H). 
13

C NMR (CDCl3, 126 MHz): δ 135.2, 131.4, 128.2, 127.7, 123.8, 120.8, 91.3, 86.8, 29.3, 25.8, 22.4, 

21.6. 

HRMS: exact mass calculated for [M] (C14H15) requires m/z 182.1095, found m/z 182.1102. 

Characterisation data is consistent with literature reported values.
15 

 

3y: 1-Methyl-4-(phenylethynyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and p-tolylacetylene (33.2 µL, 0.263 mmol, 1.05 equiv). 

After 1 h, the reaction mixture was subjected to the purification method outlined in the General 
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Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as an off white solid 

(46.9 mg, 98%). 

max (liquid film): 3032, 2921, 2219, 1597, 1511 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.53 (dd, J = 7.7, 1.5 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 

7.3 Hz, 3H), 7.16 (d, J = 7.9 Hz, 2H), 2.38 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 138.4, 131.6, 131.5, 129.1, 128.3, 128.1, 123.5, 120.2, 89.6, 88.7, 

21.5. 

HRMS: exact mass calculated for [M] (C15H12) requires m/z 192.0939, found m/z 192.0942. 

Characterisation data is consistent with literature reported values.
2 

 

3z: 1-(Phenylethynyl)-2-(trifluoromethyl)benzene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 2-ethynyltrifluorotoluene (36.5 µL, 0.263 mmol, 

1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as a 

colourless oil (53 mg, 86%). 

max (liquid film): 3066, 2224, 1312 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.69 (t, J = 8.3 Hz, 2H), 7.57 (dd, J = 6.5, 3.0 Hz, 2H), 7.53 (t, J = 7.5 

Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.40–7.35 (m, 3H). 
 13

C NMR (CDCl3, 126 MHz): δ 133.7, 131.7, 131.4, 128.8, 128.4, 127.9, 125.9 (q, 
3
JCF = 5.2 Hz), 

123.6 (q, 
1
JCF = 273.5 Hz), 122.8, 121.6, 94.9, 85.4. Carbon bearing trifluoromethyl group not 

observed. 
19

F NMR (CDCl3, 471 MHz): δ -62.35. 

HRMS: exact mass calculated for [M] (C15H9F3) requires m/z 246.0656, found m/z 246.0654. 

Characterisation data is consistent with literature reported values.
16 

 

3aa: 2-(Phenylethynyl)pyridine 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 2-ethynylpyridine (26.5 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–15% EtOAc in petroleum ether) to afford the title compound as a 

yellow oil (43.3 mg, 97%). 

max (liquid film): 3053, 2224, 1582, 1493, 1463 cm
-1

.  
1
H NMR (CDCl3, 500 MHz): δ 8.62 (d, J = 4.4 Hz, 1H), 7.67 (td, J = 7.7, 1.7 Hz, 1H), 7.60 (dd, J = 

6.5, 3.1 Hz, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.38–7.35 (m, 3H), 7.26 – 7.22 (m, 1H). 
 13

C NMR (CDCl3, 126 MHz): δ 150.1, 143.5, 136.2, 132.1, 128.9, 128.4, 127.2, 122.8, 122.3, 89.2, 

88.6. 

HRMS: exact mass calculated for [M+Na]
+
 (C21H18BF3N2O6SNa) requires m/z 179.0735, found m/z 

179.0731. 
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Characterisation data is consistent with literature reported values.
2 

 

3ab: 2-(Phenylethynyl)thiophene 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodobenzene (27.9 µL, 0.25 mmol, 1 equiv), and 2-ethynylthiophene (24.9 µL, 0.263 mmol, 1.05 

equiv). After 1 h, the reaction mixture was subjected to the purification method outlined in the 

General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title compound as an off 

white solid (42.4 mg, 92%). 

max (liquid film): 3088, 2204 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.54–7.50 (m, 2H), 7.35 (m, 3H), 7.31–7.28 (m, 2H), 7.02 (t, J = 4.4 

Hz, 1H). 
13

C NMR (CDCl3, 126 MHz): δ 131.9, 131.4, 128.4, 128.4, 127.3, 127.1, 123.4, 122.9, 93.0, 82.6. 

HRMS: exact mass calculated for [M] (C12H8S) requires m/z 184.0347, found m/z 184.0349. 

Characterisation data is consistent with literature reported values.
2 

 

 

 

 

5.5. Products from Scheme 2c 

3ac: 2-Acetyl phenylethynylboronic acid, MIDA ester 

 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodoacetophenone (35.8 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester (47.5 mg, 

0.263 mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method 

outlined in the General Procedure (silica gel, 0–100% EtOAc in petroleum ether) to afford the title 

compound as an off white solid (66.5 mg, 89%).  

max (solid): 2960, 2193, 1770, 1684 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 7.79 (dd, J = 7.7, 0.9 Hz, 1H), 7.63 (dd, J = 7.6, 0.9 Hz, 1H), 7.57 

(td, J = 7.5, 1.3 Hz, 1H), 7.52 (td, J = 7.6, 1.3 Hz, 1H), 4.34 (d, J = 17.1 Hz, 2H), 4.13 (d, J = 17.1 Hz, 

2H), 3.11 (s, 3H), 2.63 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 200.1, 169.1, 141.2, 134.6, 131.9, 129.4, 129.2, 120.7, 98.6, 61.9, 

48.4, 29.9. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 6.23. 

HRMS: exact mass calculated for [M+NH4]
+
 (C15H18BN2O5) requires m/z 317.1305, found m/z 

317.1303. 

 

3ad: 2-Methyl-phenylethynylboronic acid, MIDA ester 
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Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodotoluene (31.8 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester (47.5 mg, 0.263 

mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined 

in the General Procedure (silica gel, 0–60% EtOAc in petroleum ether) to afford the title compound as 

an off white solid (62.9 mg, 93%).  

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), DMF (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

iodotoluene (31.8 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester (47.5 mg, 0.263 

mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method outlined 

in the General Procedure (silica gel, 0–60% EtOAc in petroleum ether) to afford the title compound as 

an off white solid (62.3 mg, 92%).  

max (solid): 3019, 2191, 1770, 1290, 1247 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 7.45 (d, J = 7.4 Hz, 1H), 7.31–7.27 (m, 2H), 7.22–7.18 (m, 1H), 

4.33 (d, J = 17.1 Hz, 2H), 4.15 (d, J = 17.1 Hz, 2H), 3.09 (s, 3H), 2.40 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 169.2, 140.3, 132.4, 129.9, 129.3, 126.3, 122.7, 98.7, 61.9, 48.4, 

20.8. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 6.37. 

HRMS: exact mass calculated for [M+NH4]
+
 (C14H18BN2O4) requires m/z 289.1355, found m/z 

289.1354. 

Characterisation data is consistent with literature reported values.
17 

 

3ae: 2-Trifluoromethoxy-phenylethynylboronic acid, MIDA ester 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

(trifluoromethoxy)iodobenzene (38.8 µL, 0.25 mmol, 1 equiv), and ethynyl boronic acid, MIDA ester 

(47.5 mg, 0.263 mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification 

method outlined in the General Procedure (silica gel, 0–60% EtOAc in petroleum ether) to afford the 

title compound as an off white solid (71.8 mg, 85%).  

max (solid): 3016, 2922, 2965, 2198, 1772, 1217, 1024 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 7.69 (d, J = 7.5 Hz, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (dd, J = 

16.7, 8.6 Hz, 2H), 4.35 (d, J = 17.2 Hz, 2H), 4.15 (d, J = 17.2 Hz, 2H), 3.09 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 169.0, 148.9, 134.5, 131.3, 128.3, 121.9, 120.6 (q, 
1
JCF = 257.4 

Hz), 117.3, 93.5, 62.1, 48.3. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 6.29. 
19

F NMR (DMSO-d6, 471 MHz): δ -56.54. 

HRMS: exact mass calculated for [M+H]
+
 (C14H12BF3NO5) requires m/z 342.0763, found m/z 

342.0767. 
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3af: Triisopropyl((2-(trifluoromethoxy)phenyl)ethynyl)silane 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M),  Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

(trifluoromethoxy)iodobenzene (38.8 µL, 0.25 mmol, 1 equiv), and (triisopropylsilyl)acetylene (58.9 

µL, 0.263 mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to the purification method 

outlined in the General Procedure (silica gel, 0–1% Et2O in petroleum ether) to afford the title 

compound as a colouless oil (58.3 mg, 68%). 

max (liquid film): 2947, 2868, 2167, 1491, 1258, 1219, 1169 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.47 (dd, J = 7.6, 1.3 Hz, 1H), 7.28–7.24 (m, 1H), 7.19–7.14 (m, 2H), 

1.06 (s, 21H). 
13

C NMR (CDCl3, 126 MHz): δ 149.8, 134.1, 129.4, 126.6, 121.2, 120.6 (q, 
1
JCF = 258.1 Hz), 118.3, 

100.4, 97.1, 18.5, 11.2. 
19

F NMR (471 MHz, CDCl3): δ -57.50. 

HRMS: exact mass calculated for [M] (C18H25F3SiO) requires m/z 342.1627, found m/z 342.1626. 

 

3ag: 2-((Triisopropylsilyl)ethynyl)aniline 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 

mg, 0.005 mmol, 2 mol %), CuI (1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (38 

µL, 0.275 mmol, 1.1 equiv), 2-iodoaniline (54.8 mg, 0.25 mmol, 1 equiv), and 

(triisopropylsilyl)acetylene (58.9 µL, 0.263 mmol, 1.05 equiv). After 1 h, the reaction mixture was 

subjected to the purification method outlined in the General Procedure (silica gel, 0–10% Et2O in 

petroleum ether) to afford the title compound as a yellow oil (45.3 mg, 66%). 

max (liquid film): 3487, 3388, 2945, 2867, 2146, 1616, 1318 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.31 (dd, J = 7.7, 1.1 Hz, 1H), 7.14–7.09 (m, 1H), 6.71–6.64 (m, 2H), 

4.25 (s, 2H), 1.14 (s, 21H). 
13

C NMR (CDCl3, 126 MHz): δ 148.3, 132.4, 129.7, 117.7, 114.1, 108.3, 103.7, 95.9, 18.7, 11.3. 

HRMS: exact mass calculated for [M+H]
+
 (C17H28NSi) requires m/z 274.1986, found m/z 274.1986. 

Characterisation data is consistent with literature reported values.
18 

 

3ah: ((2-Chlorophenyl)ethynyl)triisopropylsilane 

 

 

 

 

Prepared according to General Procedure A using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M),  Et3N (38 µL, 0.275 mmol, 1.1 equiv), 2-

chloro-iodobenzene (30.5 µL, 0.25 mmol, 1 equiv), and (triisopropylsilyl)acetylene (58.9 µL, 0.263 

mmol, 1.05 equiv). After 1 h, the reaction mixture was subjected to purification by reverse phase 

chromatography (C18 cartridge, 20–100% MeCN in water) to afford the title compound as a yellow 

oil (47.7 mg, 65%). 
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max (liquid film): 2945, 2867, 2163, 1472, 1225 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.51 (dd, J = 7.5, 1.6 Hz, 1H), 7.38 (dd, J = 7.9, 0.9 Hz, 1H), 7.23 (td, 

J = 7.7, 1.8 Hz, 1H), 7.19 (td, J = 7.5, 1.2 Hz, 1H), 1.15 (s, 21H). 
 13

C NMR (CDCl3, 126 MHz): δ 136.5, 133.9, 129.4, 126.4, 123.6, 103.3, 96.9, 18.8, 11.5. 

HRMS: exact mass calculated for [M] (C17H25ClSi) requires m/z 292.1414, found m/z 292.1431. 

 

5.6. Cyrene homo-aldol adducts, 4a and 4b 

 

To a stirred solution of Cyrene (256 mg, 2.0 mmol, 1 equiv) was added DBU (30 mg, 0.2 mmol, 0.1 

equiv) and the mixture heated to 100 °C for 10 minutes. The resulting mixture was cooled to 20 °C 

giving a viscous brown oil and then kept at 20 °C for 72 hours over which time the mixture began to 

crystallise. The mixture was then purified by flash chromatography (30% EtOAc/hexanes to EtOAc) 

to give 4a as a colourless oil (40 mg, 16%). 

 

max (neat): 3470, 2962, 2895, 1731 cm
-1

. 

1
H NMR (CDCl3, 500 MHz): δ 5.71 (s, 1H), 5.04 (s, 1H), 4.73-4.70 (m, 1H), 4.44-4.41 (m, 1H), 4.01 

(br d, J = 7.4 Hz, 1H), 3.91 (ddd, J = 7.4, 4.9, 1.6 Hz, 1H), 3.83 (d, J = 7.1 Hz, 1H), 3.76 (ddd, J = 

7.1, 5.1, 0.9 Hz, 1H), 3.35 (dd, J = 12.0, 7.4 Hz, 1H), 2.72 (s, 1H), 2.27 (dddd, J = 13.3, 12.0, 3.7, 1.8 

Hz, 1H), 1.96 (ddd, J = 13.3, 7.4, 1.6 Hz, 1H), 1.64-1.59 (m, 3H), 1.50-1.46 (m, 1H). 

13
C NMR (CDCl3, 126 MHz): δ 203.7, 102.9, 101.6, 73.6, 73.2, 72.9, 68.4, 67.9, 42.7, 32.6, 26.7, 

25.1. 

ESI-MS: m/z 257 (50, [M+H]+), 279 (100, [M+Na]). 

 
To an oven-dried 5 mL microwave vessel was added K3PO4 (637 mg, 3 mmol, 3 equiv). The vessel 

was then capped and purged with N2 before addition of THF (4 mL, 0.25 M), and Cyrene (123 μL, 1 

mmol, 1 equiv). The reaction mixture was heated to 70 °C and maintained at this temperature with 

stirring for 8 h before the vessel was vented, and decapped. The solution was then diluted with EtOAc 

(20 mL), and washed with water (2 × 20 mL) and brine (2 × 20 mL). The organics were then passed 

through a hydrophobic frit and concentrated under reduced pressure to give an off white solid, which 

was purified by flash chromatography (silica gel, 0–50% EtOAc in petroleum ether) to afford the title 

compound as a white solid (105 mg, 88%). 

 

max (solid): 2898, 1703, 1621, 1098 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 6.76 (s, 1H), 5.18 (s, 1H), 4.79 (t, J = 5.1 Hz, 1H), 4.60 (t, J = 4.0 Hz, 

1H), 3.94 – 3.83 (m, 4H), 2.78 (dd, J = 16.3, 2.6 Hz, 1H), 2.56 (d, J = 16.3 Hz, 1H), 2.41-2.24 (m, 

2H), 2.14-2.07 (m, 1H), 1.75 (dd, J = 13.5, 6.5 Hz, 1H). 

O
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O
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13
C NMR (CDCl3, 126 MHz): δ 190.7, 151.0, 123.4, 101.5, 97.2, 72.6, 72.5, 68.7, 67.8, 34.1, 28.8, 

20.4. 

HRMS: exact mass calculated for [M] (C12H14) requires m/z 238.0841, found m/z 238.0839. 

 

5.7. Products from Scheme 3 

7a: 2-Phenyl-1-tosyl-1H-indole 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(2-

iodophenyl)-4-methylbenzenesulfonamide (93 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 

µL, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was subjected to the purification method 

outlined in the General Procedure (silica gel, 0–15% EtOAc in petroleum ether) to afford the title 

compound as a white solid (78.4 mg, 90%). 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), DMF (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(2-

iodophenyl)-4-methylbenzenesulfonamide (93 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 

µL, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was subjected to the purification method 

outlined in the General Procedure (silica gel, 0–15% EtOAc in petroleum ether) to afford the title 

compound as a white solid (78.6 mg, 91%). 

max (solid): 3073, 1368, 1169 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 8.33 (d, J = 8.4 Hz, 1H), 7.54–7.50 (m, 2H), 7.45 (t, J = 8.2 Hz, 4H), 

7.38 (t, J = 7.4 Hz, 1H), 7.31–7.28 (m, 3H), 7.06 (d, J = 8.1 Hz, 2H), 6.56 (s, 1H), 2.31 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 144.5, 142.2, 138.3, 134.7, 132.4, 130.7, 130.4, 129.2, 128.7, 127.5, 

126.8, 124.8, 124.3, 120.7, 116.7, 113.4, 21.5. 

HRMS: exact mass calculated for [M+H]
+
 (C21H18NO6S) requires m/z 348.1058, found m/z 348.1061. 

Characterization data is consistent with literature reported values.
3 

 

7b: 5-Nitro-2-phenyl-1-tosyl-1H-pyrrolo[2,3-b]pyridine 

 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(3-

iodo-5-nitropyridin-2-yl)-4-methylbenzenesulfonamide (104 mg, 0.25 mmol, 1 equiv), and 

phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was subjected to 

the purification method outlined in the General Procedure (silica gel, 0-30% EtOAc in petroleum 

ether) to afford the title compound as an off white solid (71.4 mg, 73%). 

max (solid): 3070, 2935, 1593, 1517, 1394, 1346, 1184 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 9.32 (d, J = 2.4 Hz, 1H), 8.61 (d, J = 2.4 Hz, 1H), 7.85 (d, J = 8.3 Hz, 

2H), 7.55 – 7.48 (m, 5H), 7.24 (d, J = 8.1 Hz, 2H), 6.63 (s, 1H), 2.37 (s, 3H). 
13

C NMR (CDCl3, 126 MHz): δ 151.3, 145.8, 145.8, 141.4, 140.3, 135.3, 131.5, 129.9, 129.6, 129.6, 

128.2, 127.9, 124.3, 121.4, 108.3, 21.7. 

HRMS: exact mass calculated for [M+H]
+
 (C20H16N3O4S) requires m/z 394.0862, found m/z 394.0869. 
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7c: 2-Phenylbenzofuran 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), 2-

iodophenol (55 mg, 0.25 mmol, 1 equiv), and phenylacetylene (28.8 µL, 0.263 mmol, 1.05 equiv). 

After 7 h, the reaction mixture was subjected to the purification method outlined in the General 

Procedure (silica gel, 0–1% EtOAc in petroleum ether) to afford the title compound as a white solid 

(43.3 mg, 89%). 

max (solid): 3038, 2924, 2855 cm
-1

. 
1
H NMR (CDCl3, 500 MHz): δ 7.88 (d, J = 7.4 Hz, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 8.1 Hz, 

1H), 7.46 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.23 (t, J = 7.4 Hz, 

1H), 7.03 (s, 1H). 
13

C NMR (CDCl3, 126 MHz): δ 155.9, 154.9, 130.5, 129.2, 128.8, 128.6, 124.9, 124.3, 122.9, 120.9, 

111.2, 101.3 

HRMS: exact mass calculated for [M] (C14H10O) requires m/z 194.0732, found m/z 194.0737. 

Characterization data is consistent with literature reported values.
19 

 

7d: (1-Tosyl-1H-indol-2-yl)boronic acid, MIDA ester 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(2-

iodophenyl)-4-methylbenzenesulfonamide (93 mg, 0.25 mmol, 1 equiv), and ethynyl boronic acid, 

MIDA ester (47.5 mg, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was subjected to the 

purification method outlined in the General Procedure (silica gel, 0–80% EtOAc in petroleum ether) 

to afford the title compound as a white solid (87.4 mg, 82%). 

max (solid): 2928, 1763, 1450, 1176, 1038 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 8.12 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 7.7 

Hz, 1H), 7.37 (dd, J = 13.1, 8.0 Hz, 3H), 7.25 (t, J = 7.4 Hz, 1H), 7.06 (s, 1H), 4.47 (d, J = 17.5 Hz, 

2H), 4.23 (d, J = 17.4 Hz, 2H), 2.96 (s, 3H), 2.32 (s, 3H). 
13

C NMR (DMSO-d6, 126 MHz): δ 169.6, 145.72, 138.9, 135.5, 130.4, 130.1, 127.08, 125.7, 123.9, 

122.2, 122.0, 114.7, 64.8, 49.9, 21.5. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 10.28. 

HRMS: exact mass calculated for [M+H]
+
 (C20H20BN2O6S) requires m/z 427.1139, found m/z 

427.1139. 

Characterization data is consistent with literature reported values.
4 

 

7e: (5-Fluoro-1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester  

 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(4-

fluoro-2-iodophenyl)-4-methylbenzenesulfonamide (98 mg, 0.25 mmol, 1 equiv), and ethynyl boronic 



s25 
 

acid, MIDA ester (47.5 mg, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was subjected to 

the purification method outlined in the General Procedure (silica gel, 0–80% EtOAc in petroleum 

ether) to afford the title compound as a white solid (98 mg, 88%). 

max (solid): 2930, 1750, 1305, 1174, 1040 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 8.13 (dd, J = 9.2, 4.3 Hz, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.47 (dd, J 

= 8.8, 2.6 Hz, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.22 (td, J = 9.2, 2.6 Hz, 1H), 7.06 (s, 1H), 4.48 (d, J = 

17.5 Hz, 2H), 4.24 (d, J = 17.5 Hz, 2H), 2.96 (s, 3H), 2.33 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 169.6, 159.3 (d, 
1
JCF = 238.2 Hz), 145.9, 135.4, 135.3, 131.2 (d, 

3
JCF = 10.4 Hz), 130.5, 127.1, 121.9, 116.1 (d, 

3
JCF = 9.4 Hz), 113.5 (d, 

2
JCF = 25.5 Hz), 107.1 (d, 

2
JCF 

= 23.5 Hz), 64.8, 49.9, 21.5. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 10.09. 
19

F NMR (DMSO-d6, 471 MHz): δ -120.04. 

HRMS: exact mass calculated for [M] (C21H18BF3N2O6SNa) requires m/z 444.2966, found m/z 

444.0951. 

Characterization data is consistent with literature reported values.
4 

 

7f: (6-Chloro-1-tosyl-1H-indol-2-yl)boronic acid, MIDA ester  

 

 

 

Prepared according to General Procedure B using Pd(PPh3)2Cl2 (3.5 mg, 0.005 mmol, 2 mol %), CuI 

(1.9 mg, 0.01 mmol, 4 mol %), Cyrene (0.5 mL, 0.5 M), Et3N (104 µL, 0.75 mmol, 3 equiv), N-(4-

chloro-2-iodophenyl)-4-methylbenzenesulfonamide (102 mg, 0.25 mmol, 1 equiv), and ethynyl 

boronic acid, MIDA ester (47.5 mg, 0.263 mmol, 1.05 equiv). After 7 h, the reaction mixture was 

subjected to the purification method outlined in the General Procedure (silica gel, 0–80% EtOAc in 

petroleum ether) to afford the title compound as a white solid (116 mg, quant.). 

max (solid): 2922, 1763, 1455, 1267, 1173, 1038 cm
-1

. 
1
H NMR (DMSO-d6, 500 MHz): δ 8.11 (s, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 1H), 

7.42 (d, J = 8.2 Hz, 2H), 7.34 (dd, J = 8.4, 1.7 Hz, 1H), 7.09 (s, 1H), 4.48 (d, J = 17.5 Hz, 2H), 4.23 

(d, J = 17.4 Hz, 2H), 2.94 (s, 3H), 2.34 (s, 3H). 
 13

C NMR (DMSO-d6, 126 MHz): δ 169.6, 146.1, 139.3, 135.2, 130.6, 130.4, 128.9, 127.0, 124.4, 

123.4, 121.9, 114.4, 64.7, 49.9, 21.5. Carbon bearing boron not observed. 
11

B NMR (DMSO-d6, 160 MHz): δ 10.21. 

HRMS: exact mass calculated for [M+Na]
+
 (C20H18ClN2O6SB) requires m/z 460.0671, found m/z 

460.0658. 

Characterization data is consistent with literature reported values.
4 

 

6. Crystallographic Data for Compound 4b 

Single crystal diffraction measurements were made with an Oxford Diffraction Gemini S instrument. 

Refinement was to convergence against F
2
 and used all unique reflections. Programs used were from 

the SHELX suite.
20

 Non-hydrogen atoms were refined anisotropically whereas hydrogen atoms were 

placed in idealized positions and refined in riding modes. Selected crystallographic and refinement 

parameters are given in Table 1. CCDC reference number CCDC 1485168 contains the 

supplementary crystallographic data for this paper. This data can be obtained free of charge from The 

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

 

http://www.ccdc.cam.ac.uk/data_request/cif
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Table S1 Selected crystallographic data and refinement parameters for compound 4b. 

Compound 4 

Formula C12H14O5 

Mr (g mol-1) 238.23 

Crystal system monoclinic 

Space group P21 

Temperature (K) 123(2) 

a (Å) 6.4668(2) 

b (Å) 9.8239(3) 

c (Å) 8.5963(2) 

β (°) 96.341(3) 

V/Å3 542.78(3) 

Z 2 

Wavelength (Å) 0.71073 

Measured reflections 9884 

Unique reflections 3457 

Rint 0.03024 

Observed rflns [I > 2σ(I)] 3286 

μ (mm-1) 0.114 

No. of parameters 155 

2θmax (°) 63.8 

R [on F, obs rflns only] 0.0329 

wR [on F2, all data] 0.0852 

GoF 1.043 

Largest diff.  

peak/hole/e Å-3 
0.242/0.191 
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9. 
1
H NMR Evidence for the Evaluation of the Base Sensitivity
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