
This version is available at https://strathprints.strath.ac.uk/57635/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
TISSUE VIABILITY MONITORING - A MULTI-SENSOR WEARABLE PLATFORM APPROACH

Neha MATHUR1, Alan DAVIDSON1, Arjan BUIS2, Ivan GLESK1

1Department of Electronic and Electrical Engineering, Faculty of Engineering, University of Strathclyde, 204 George Street, Glasgow, UK
2Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK

Health services worldwide are seeking ways to improve patient care for amputees suffering from diabetes, and at the same time reduce costs. The monitoring of residual limb temperature, interface pressure and gait can be a useful indicator of tissue viability in lower limb amputees especially to predict the occurrence of pressure ulcers. This is further exacerbated by elevated temperatures and a humid micro environment within the prosthesis which encourages the growth of bacteria and skin breakdown [1].

Figure 1. Architecture of the data flow in the multi-sensor wearable platform.

Wearable systems for prosthetic users have to be designed such that the sensors are minimally obtrusive and reliable enough to faithfully record movement and physiological signals. A mobile sensor platform has been developed for use with lower limb prosthetic users as seen in Fig. 1. This system uses an Arduino board that includes sensors for temperature, gait, orientation and pressure measurements [2]. The platform transmits sensor data to a central health authority database server infrastructure through the Bluetooth protocol at a suitable sampling rate. The data-sets recorded using these systems are then processed using machine learning algorithms to extract clinically relevant information from the data. Where a sensor threshold is reached a warning signal can be sent wirelessly together with the relevant data to the patient and appropriate medical personnel. This knowledge is also useful in establishing biomarkers related to a possible deterioration in a patient’s health or for assessing the impact of clinical interventions.

REFERENCES