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Abstract

We study stochastic versions of a deterministic SIRS(Susceptible, Infective, Re-
covered, Susceptible) epidemic model with standard incidence. We study the ex-
istence of a stationary distribution of stochastic system by the theory of integral
Markov semigroup. We prove the distribution densities of the solutions can con-
verge to an invariant density in L1. This shows the system is ergodic. The presented
results are demonstrated by numerical simulations.

1 Introduction

Infectious diseases are the second cause of leading death worldwide, after heart disease.
Therefore, it is imperative to know the dynamical behavior of such diseases and to forecast
what may happen. The spread of communicable diseases is generally described mathe-
matically by compartmental models. Most epidemiological models stimulate from the
classical SIR compartmental model of Kermack and McKendrick [14] which assumes a
constant population. The assumption that the population is constant or asymptotically
constant is often a reasonable approximation when modeling epidemics where the disease
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spreads quickly in the population and dies out within a short time (influenza, SARS, etc.)
and the disease rarely causes deaths (West Nile virus in human or livestock). However, for
endemic diseases in communities with changing populations (malaria), or diseases with
high mortality rate (HIV/AIDS in poor countries), it is reasonable to assume varying
population size and standard incidence rate in the mathematical theory of epidemiology
(see, for instance, [1, 2, 3, 4, 17, 11]).

In the SIRS models, susceptible individuals may become infected by contact with
infective individuals, and after some time, recovered individuals become susceptible again.
Busenberg and van den Driessche [7] have proposed the continuous SIRS epidemic model
in a population with varying size:

dSt
dt

= bNt − µSt −
βStIt
Nt

+ δRt,

dIt
dt

=
βStIt
Nt

− (µ+ α + γ)It,

dRt

dt
= γIt − (µ+ δ)Rt.

(1)

Here S, I and R denote the total numbers of susceptible, infective and recovered (removed)
individuals respectively, and N is the total population size,

dNt/dt = (b− µ)Nt − αIt.

The parameter b denotes the per capita birth rate, µ denotes the per capita disease free
death rate, α denotes the disease-related per capita death rate of infected individuals.
δ denotes the per capita loss of immunity rate of recovered individuals, γ denotes the

per capita recovery rate of infected individuals. The force of infection is
βI

N
with β as

the effective per capita contact rate of an infective individual. All parameter values are
assumed to be nonnegative. They discuss the extinction and persistence of the epidemic
according to the threshold

R0 =
β

b+ α + γ
. (2)

As a matter of fact, population systems are often subject to environmental noise. May
[21] pointed out the fact that due to environmental fluctuations, the birth rates, death
rates, carrying capacity and other parameters involved with the model system exhibit
random fluctuations to a greater or lesser extent. Realistic models of population dynamics
must take into account both predictable and unpredictable changes in those factors. The
standard technique of parameter perturbation has been used by many authors for building
stochastic epidemic models [8, 9, 20, 15, 30, 28, 27].

In studying epidemic dynamical system, we are always interested in when the disease
will die out or prevail. In the deterministic models, the second problem is solved by
showing that the endemic equilibrium of corresponding model is a global attractor or is
globally asymptotically stable. But, there may be no endemic equilibrium in stochastic
systems. Therefore, it is necessary to study the existence of stationary distribution to the
solution and whether the solution is ergodic. These properties can reveal the disease to
persist. Mao [9] showed the existence of a unique stationary distribution of the solution
of the stochastic SIS epidemic model based on the theory of Hasminskii [10]. Lahrouz
and Omari [16] studied a stochastic SIRS epidemic model with general incidence rate in
a population of varying size. Sufficient conditions for the extinction and the existence of
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a unique stationary distribution are obtained. Lin and Jiang [18] discussed a stochastic
classic SIR system with bilinear incidence. They showed sufficient conditions for the
disease to extinct exponentially. In the case of persistence they proved the existence of a
stationary distribution and found the support of the invariant density.

Recently, Zhao et al. [29] considered the stochastic versions of model (1) with varying
population and standard incidence:

dSt = (bNt − µSt −
βStIt
Nt

+ δRt)dt−
σStIt
Nt

dBt,

dIt = (
βStIt
Nt

− (µ+ α + γ)It)dt+
σStIt
Nt

dBt,

dRt = (γIt − (µ+ δ)Rt)dt.

(3)

Here Bt is a standard Brownian motion with B(0) = 0, the white noise intensity is σ2 > 0.
The authors [29] obtained that, a crucial threshold

R̃0 =
β

b+ α + γ
− σ2

2(b+ α + γ)
(4)

is determined which indicates the differences between the deterministic and stochastic
model. When the threshold is less than one or the noise intensity is large, they deduce
the disease to extinct exponentially. When the threshold is more than one, sufficient
conditions for persistence in the mean are established. But in the case of persistence they
can not obtain the existence of stationary distribution of system (3). The aim of this
paper is to fill the gap. Hence our work can be considered as the further work of Zhao et
al. [29].

From system (3), the equation for the total population size is Ṅ(t) = (b − µ)Nt −
αIt. Obviously, the total population is a variable. Thus it is convenient to work with
proportions of susceptibles, infectives and recovereds in the population (as in deterministic
model [7]). Defining

xt =
St
Nt

, yt =
It
Nt

, and zt =
Rt

Nt

, (5)

it gives xt + yt + zt = 1. Then it is sufficient to study the stochastic differential equation
of xt, yt and zt. Using Itô’s formula and the relation zt = 1 − xt − yt, we can omit the
equation of zt and discuss the following system{

dxt = [(b+ δ)(1− xt)− (β − α)xtyt − δyt]dt− σxtytdBt,

dyt = [βxtyt − (b+ α + γ)yt + αy2
t ]dt+ σxtytdBt,

(6)

with any given initial value (x0, y0) ∈ R2
+ and x0 + y0 < 1.

In this paper, we will study the long-time behavior of system (6). The main aim of this
paper is to study the existence of a stationary distribution of system (6) and its asymptotic
stability. To the best of our knowledge, there are no literatures analytically concerning
the existence of a stationary distribution of epidemic models with standard incidence.
This is mainly because the Fokker-Planck equation (7) corresponding to system (6) is
of a degenerate type. Therefore, it is not within the scope of application of Has’minskii
theorem which is used in [9, 19, 13]. The key to our analysis approach is based on the
theory of integral Markov semigroups, which was used in [23, 24, 18]. The specific strategy
is given section 3. In the appendix, we present some auxiliary results and the main tools
concerning Markov semigroups.
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Throughout this paper, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0

contains all P -null sets). Denote R2
+ := {(x, y) ∈ R2 : x > 0, y > 0}.

2 Preliminaries

Now we introduce a Markov semigroup connected with the Fokker-Planck equation (7).

LetX = R2
+, Σ be the σ-algebra of Borel subsets ofX, andm be the Lebesgue measure

on (X,Σ). We denote P(t, x, y, A) to the transition probability function for the diffusion
process (xt, yt) of (6) with the initial condition (x0, y0) = (x, y), i.e. P(t, x, y, A) =
Prob((xt, yt) ∈ A). If, for t > 0, the distribution of (xt, yt) is absolutely continuous with
respect to the Lebesgue measure with the density u(t, x, y), then u(t, x, y) satisfies the
Fokker-Planck equation:

∂u

∂t
=

1

2
σ2

[
∂2(x2y2u)

∂x2
− 2

∂2(x2y2u)

∂x∂y
+
∂2(x2y2u)

∂y2

]
− ∂(f1(x, y)u)

∂x
− ∂(f2(x, y)u)

∂y
, (7)

where f1(x, y) = (b+ δ)(1− x)− (β − α)xy − δy, f2(x, y) = βxy − (b+ α + γ)y + αy2.

Let P (t)v(x, y) = u(t, x, y) for any v(x, y) ∈ D (See (33) in the Appendix). Since
P (t) is a contraction on D, it can be extended to a contraction on L1(X,Σ,m). Thus the
operators {P (t)}t≥0 form a Markov semigroup. Let L be the infinitesimal generator of
the semigroup {P (t)}t≥0 , i.e.

L v =
1

2
σ2

[
∂2(x2y2v)

∂x2
− 2

∂2(x2y2v)

∂x∂y
+
∂2(x2y2v)

∂y2

]
− ∂(f1v)

∂x
− ∂(f2v)

∂y
.

The adjoint operator of L is of the form

L ∗v =
1

2
σ2x2y2

[
∂2v

∂x2
− 2

∂2v

∂x∂y
+
∂2v

∂y2

]
+ f1

∂v

∂x
+ f2

∂v

∂y
. (8)

In [29], the existence and uniqueness of positive solution of system (1.6) is given.

Theorem 2.1 There is a unique solution (x(t), y(t)) of system (6) on t ≥ 0 for any
initial value (x(0), y(0)) ∈ Γ, and the solution will remain in Γ with probability 1, where

Γ = {(x, y) : x > 0, y > 0, x+ y < 1}

is a positively invariant set of system (6).

3 The stationary distribution of the solution

In this section, we investigate the existence for a stationary distribution of system (6).

Theorem 3.1 Let (xt, yt) be a solution of system (6). Then for every t > 0, the dis-
tribution of (xt, yt) has a density u(t, x, y) which satisfies Fokker-Planck equation (7). If
R̃0 > 1, then there exists a unique density u∗(x, y) which is a stationary solution of (7)
and

lim
t→∞

∫∫
Γ

|u(t, x, y)− u∗(x, y)|dxdy = 0.
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In addition,

suppu∗ =

{
(x, y) ∈ Γ :

(b+ α+ γ + δ)−
√

(b+ δ − α+ γ)2 + 4γα

2α
< x+ y < 1

}
:= G. (9)

Remark 1 By the support of a measurable function f we simply mean the set

suppf = {(x, y) ∈ R2
+ : f(x, y) 6= 0}.

This is not the customary definition of the support of a function, which is usually the
closure of the set supp f , but this slightly unusual definition is more suitable our purposes.
By Theorem 2.1, for any initial value (x(0), y(0)) ∈ Γ, and the solution (x(t), y(t)) of
system (6) on t ≥ 0 will remain in invariant set Γ with probability 1. Therefore we
consider Γ is the whole space. As a result, the support of the invariant density u∗ is
shown in (9).

This results from the fact that the Fokker-Planck equation corresponding to system
(6) is of a degenerate type. Our approach comes from Markov semigroup theory, which
was used in [23, 24, 18], the specific strategy is as follows:

First, using the Hörmander condition [6] we show that the transition function of the
process (xt, yt) is absolutely continuous (see Lemma 3.1). Then, using support theorems
[26, 5, 25] we find a set G on which the density of the transition function is positive (G is
given in (9)) (see Lemma 3.2 and Lemma 3.3). Next, we show that the Markov semigroup
satisfies the “Foguel alternative” ( see Appendix), i.e. it is either asymptotically stable or
“sweeping” (see Lemma 3.3). Finally, we exclude sweeping by showing that there exists a
Khasminskĭı function (24) (see Lemma 3.5). In this way we prove the most difficult part
of the paper to show asymptotic stability of system (6).

In the following, we realize this strategy by Lemma 3.2-3.6.

Lemma 3.2 The transition probability function P(t, x0, y0, A) has a continuous density
k(t, x, y;x0, y0).

Proof. If a(x) and b(x) are vector fields on Rd, then the Lie bracket [a, b] is a vector field
given by

[a, b]j(x) =
d∑

k=1

(
ak
∂bj
∂xk

(x)− bk
∂aj
∂xk

(x)

)
, j = 1, 2, . . . , d.

Let a(ξ, η) = ((b + δ)(1− ξ)− (β − α)ξη − δη, βξη − (b + α + γ)η + αη2)T and b(ξ, η) =
(−σξη, σξη)T , (ξ, η) ∈ Γ. Then by direct calculating, [a, b] = (ση[(b+ α+ γ + δ)ξ + δη −
αξ2 − αξη − (b+ δ)], ση[(b+ δ)(1− ξ)− δη])T . Consequently,∣∣∣∣ −σξη ση[(b+ α + γ + δ)ξ + δη − αξ2 − αξη − (b+ δ)]

σξη ση[(b+ δ)(1− ξ)− δη]

∣∣∣∣
=− σ2ξ2η2[γ + α(1− ξ − η)] < 0

which means that b, [a, b] are linearly independent on Γ. This implies that at any point
(ξ, η) ∈ Γ, linearly independent vectors b(ξ, η), [a, b](ξ, η) can span R2. Thus the vector
fields a and b satisfy the Hörmander condition [6]. Then using Hörmander Theorem we
show that the transition probability function P(t, x0, y0, A) has a density k(t, x, y;x0, y0)
and k ∈ C∞ ((0,∞)× Γ× Γ). �
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Remark 2 According to Lemma 3.2, there exists a measurable function k(t, x, y;
x0, y0), such that

P (t)f(x, y) =

∫∫
Γ

k(t, x, y;u, v)f(u, v)dudv

for every density f . By the definition (see Appendix A), the semigroup {P (t)}t≥0 is an
integral Markov semigroup.

Next, we rewrite SDE (6) of the Itô type as the SDE of the Stratonovitch type:{
dxt = f̃1(xt, yt)dt− σxtyt ◦ dBt,

dyt = f̃2(xt, yt)dt+ σxtyt ◦ dBt,

where

f̃1(x, y) = (b+ δ)(1− x)− (β − α)xy − δy +
1

2
σ2(x2y − xy2),

f̃2(x, y) = βxy − (b+ α + γ)y + αy2 − 1

2
σ2(x2y − xy2).

By the theorems [26, 5, 25], we now check where the kernel k is positive. Fixed a point
(x0, y0) ∈ Γ and a function ψ ∈ L2([0, T ];R), consider the following system of integral
equations: 

xψ(t) = x0 +

∫ t

0

[f̃1(xψ(s), yψ(s))− σψxψ(s)yψ(s)]ds,

yψ(t) = y0 +

∫ t

0

[f̃2(xψ(s), yψ(s)) + σψxψ(s)yψ(s)]ds.

(10)

Let Dx0,y0;ψ be the Frechét derivative of the function h 7→ xψ+h(T ) from L2([0,

T ];R) to R2, where xψ+h =

(
xψ+h

yψ+h

)
. If for some ψ ∈ L2([0, T ];R) the derivative

Dx0,y0;ψ has rank 2, then k(T, x, y;x0, y0) > 0 for x = xψ(T ) and y = yψ(T ). The deriva-
tive Dx0,y0;ψ can be found by means of the perturbation method for ODEs. Namely,
let Γ(t) = f ′(xψ(t), yψ(t)) + g′(xψ(t), yψ(t))ψ, where f ′ and g′ are the Jacobians of f =(
f̃1(x, y)

f̃2(x, y)

)
and g =

(
−σxy
σxy

)
respectively. Let Q(t, t0), for T ≥ t ≥ t0 ≥ 0, be a

matrix function such that Q(t0, t0) = I, ∂Q(t, t0)/∂t = Γ(t)Q(t, t0). Then

Dx0,y0;ψh =

∫ T

0

Q(T, s)g(s)h(s)ds.

Lemma 3.3 For each (x0, y0) ∈ G and (x, y) ∈ G, there exists T > 0 such that k(T, x, y;x0, y0) >
0, where G is as in (9).

Proof. Step 1. we check that the rank of Dx0,y0;ψ is 2. Let ε ∈ (0, T ) and h(t) =
1[T−ε,T ](t)

xψ(t)yψ(t)
, t ∈ [0, T ], where 1[T−ε,T ] is the characteristic function of interval [T − ε, T ].

Since Q(T, s) = I + Γ(T )(T − s) + o(T − s), we obtain

Dx0,y0;ψh = εv +
1

2
ε2Γ(T )v + o(ε2), v =

(
−σ
σ

)
,

6



Γ(T )v =

 σ[b− (β − α)(x− y) + σ(y − x)ψ +
σ2

2
(x2 + y2 − 4xy)]

σ[β(x− y)− (b+ α+ γ) + 2αy − σ(y − x)ψ − σ2

2
(x2 + y2 − 4xy)]

 .

Hence, v and Γ(T )v are linearly independent. Thus Dx0,y0;ψ has rank 2.

Step 2. we show that there exist a control function ψ and T > 0 such that xψ(0) = x0,
yψ(0) = y0, xψ(T ) = x, yψ(T ) = y for any two points (x0, y0) ∈ G and (x, y) ∈ G.

Firstly, the system (10) can be replaced by the following system of differential equa-
tions: {

x′ψ = f̃1(xψ, yψ)− σψxψyψ,
y′ψ = f̃2(xψ, yψ) + σψxψyψ.

Let uψ = xψ + yψ. Then {
x′ψ = g1(xψ, uψ)− σψxψ(uψ − xψ),

u′ψ = g2(xψ, uψ),
(11)

where

g1(x, u) = f̃1(x, u− x), g2(x, u) = −γ(u− x) + (b+ δ)(1− u)− α(u− x)(1− u). (12)

Then, we have

xψ = uψ +
u′ψ − (b+ δ)(1− uψ)

α(1− uψ) + γ
.

Since 0 < xψ < uψ, we obtain

0 < uψ +
u′ψ − (b+ δ)(1− uψ)

α(1− uψ) + γ
< uψ,

then
αu2

ψ − (b+ α + γ + δ)uψ + (b+ δ) < u′ψ < (b+ δ)(1− uψ). (13)

We consider the equation

f(x) = αx2 − (b+ α + γ + δ)x+ (b+ δ) = 0,

note that

∆ = (b+ α + γ + δ)2 − 4α(b+ δ) = (b+ δ − α + γ)2 + 4γα > 0,

so the equation has two positive roots m1, m2,

m1 =
(b+ α + γ + δ)−

√
(b+ δ − α + γ)2 + 4γα

2α
< 1,

m2 =
(b+ α + γ + δ) +

√
(b+ δ − α + γ)2 + 4γα

2α
> 1.

It then follows from (13) that

− α(uψ(t)−m1)(m2 − uψ(t)) < u′ψ(t) < (b+ δ)(1− uψ(t)), t ∈ [0, T ]. (14)
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By the comparison principle, we can derive that m1 ≤ lim inft→∞ uψ ≤ 1. So we get

G0 = {(x, u) ∈ (0, 1)× (0, 1) : 0 < x < 1,m1 < u < 1 and x < u} . (15)

Next we prove that our claim holds on G0. There exists a positive constant T and a
differentiable function

uψ : [0, T ]→ (m1, 1),

such that uψ(0) = u0, uψ(T ) = u1, u′ψ(0) = g2(x0, u0) := ud0, u′ψ(T ) = g2(x1, u1) := udT and
satisfied

− α(uψ(t)−m1)(m2 − 1) < u′ψ(t) < (b+ δ)(1− uψ(t)), t ∈ [0, T ], (16)

then uψ satisfies (14) for t ∈ [0, T ].

We split the construction of the function uψ on three intervals [0, τ ], (τ, T − τ) and
[T − τ, T ], where 0 < τ < T/2.

Let

θ =
1

2
min {u0 −m1, u1 −m1, 1− u0, 1− u1} .

When uψ ∈ (m1 + θ, 1− θ), we have

− α(uψ(t)−m1)(m2 − 1) < −αθ(m2 − 1) < 0 (17)

and
(b+ δ)(1− uψ(t)) > (b+ δ)θ > 0, t ∈ [0, T ]. (18)

Therefore, we can construct a C2-function uψ : [0, τ ]→ (m1 + θ, 1− θ) such that

uψ(0) = u0, u
′
ψ(0) = ud0, u

′
ψ(τ) = 0

and uψ satisfies inequality (16) for t ∈ [0, τ ]. Analogously, we construct a C2-function
uψ : [T − τ, T ]→ (m1 + θ, 1− θ) such that

uψ(T ) = u1, u
′
ψ(T ) = udT , u

′
ψ(T − τ) = 0

and uψ satisfies inequality (16) for t ∈ [T − τ, T ].

Taking T sufficiently large we can extend the function uψ : [0, τ ] ∪ [T − τ, T ] →
(m1 + θ, 1− θ) to a C2-function uψ defined on the whole interval [0, T ] such that

−αθ(m2 − 1) ≤ u′ψ(t) ≤ (b+ δ)θ, t ∈ [τ, T − τ ],

and therefore, the function uψ satisfies (16) on [0, T ] in view of (17), (18). It follows
that we can find a C1-function xψ which satisfies (11) and finally we can determine a
continuous function ψ from (11) .

Therefore, our claim holds. This completes our proof. �

Lemma 3.4 Assume R̃0 > 1. For the semigroup {P (t)}t≥0 and every density f , we have

lim
t→∞

∫∫
G

P (t)f(x, y)dxdy = 1, (19)

where G is given in (9).
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Proof. Let Ut = xt + yt. The system (6) can be replaced by

dxt = g1(xt, Ut)dt− σxt(Ut − xt)dBt,

dUt = g2(xt, Ut)dt,

where g1 and g2 are as in (12). Since (xt, yt) is a positive solution of system (6) with
probability 1, from the expression of g2, we get

αU2
t − (b+ α + γ + δ)Ut + (b+ δ) <

dUt
dt

< (b+ δ)(1− Ut), t ∈ (0,∞), a.s.

Similar to (14), it is rewritten as

α(Ut −m1)(Ut −m2) <
dUt
dt

< (b+ δ)(1− Ut), t ∈ (0,∞), a.s. (20)

Now we claim that for almost every ω ∈ Ω there exists t0 = t0(ω) such that

m1 < Ut(ω) < 1, for t > t0, (21)

which completes our proof. According to the position of initial value U0 we consider two
cases:

Case 1. U0 ∈ (0,m1]. If our claim (21) is false, then we know that there exists Ω′ ⊂ Ω
with Prob(Ω′) > 0 such that Ut(ω) ∈ (0,m1], ω ∈ Ω′. By (20), it follows that for any
ω ∈ Ω′, Ut(ω) is strictly increasing on [0,+∞), and therefore limt→∞ Ut(ω) = m1, ω ∈ Ω′.
From the expression of g2, it follows that

lim
t→∞

xt(ω) = 0 and lim
t→∞

yt(ω) = m1, ω ∈ Ω′. (22)

By Itô’s Formula, we get

d log yt =

(
βxt − (b+ α + γ) + αyt −

σ2x2
t

2

)
dt+ σxtdBt,

which yields

log yt − log y0

t
=
β
∫ t

0
xrdr

t
− (b+ α + γ) +

α
∫ t

0
yrdr

t
−
σ2
∫ t

0
x2
rdr

2t
+
σ
∫ t

0
xrdBr

t
. (23)

Let M(t) =
∫ t

0
xrdBr, by using Strong Law of Large Numbers (Lemma A.2), we obtain

limt→∞
M(t)
t

= 0 a.s. So we get

lim
t→∞

[
β
∫ t

0
xrdr

t
− (b+ α + γ) +

α
∫ t

0
yrdr

t
−
σ2
∫ t

0
x2
rdr

2t
+
σ
∫ t

0
xrdBr

t

]
= −(b+ α + γ), a.s. on Ω′,

By (22), we get

lim
t→∞

log yt − log y0

t
= 0, on Ω′

which is a contradiction. Thus our claim holds for U0 ∈ (0,m1].

Case 2. U0 ∈ (m1, 1). From (20), it is obvious that our claim (21) holds and limt→∞ Ut 6=
m1, limt→∞ Ut 6= 1. By similar arguments to Case 1, we obtain limt→∞ Ut 6= m1. If
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limt→∞ Ut = 1, there exists Ω′ ⊂ Ω with Prob(Ω′) > 0 such that for any ω ∈ Ω′,
limt→∞ Ut(ω) = 1, limt→∞ xt(ω) = 1 and limt→∞ yt(ω) = 0. Obviously, condition R0−1 >
σ2/2(b+ α + γ) implies that

lim
t→∞

[
β
∫ t

0
xrdr

t
− (b+ α + γ) +

α
∫ t

0
yrdr

t
−
σ2
∫ t

0
x2
rdr

2t
+
σ
∫ t

0
xrdBr

t

]
= β − 1

2
σ2 − (b+ α + γ)

= (b+ α + γ)(R0 − 1− σ2

2(b+ α + γ)
) > 0, a.s. on Ω′.

By (23), we get limt→∞
log yt
t

> 0 a.s. on Ω′, which contradicts limt→∞ yt(ω) = 0, ω ∈ Ω′.

Thus our claim (21) holds for U0 ∈ (m1, 1). �

Remark 3 From lemma 3.3 and 3.4, we know that if (7) has a stationary solution u∗,
then suppu∗ = G.

Lemma 3.5 Assume R̃0 > 1. The semigroup {P (t)}t≥0 is asymptotically stable or is
sweeping with respect to compact sets.

Proof. Lemma 3.2 shows that {P (t)}t≥0 is an integral Markov semigroup with a contin-
uous kernel k(t, x, y) for t > 0. Lemma 3.4 indicates that it is sufficient to research the
restriction of the semigroup {P (t)}t≥0 to the space L1(Ḡ), where Ḡ denotes the closure
set of G. In view of lemma 3.3 for every f ∈ D, we have∫ ∞

0

P (t)fdt > 0 a.e. on Ḡ.

So according to Lemma A.1, The semigroup {P (t)}t≥0 is asymptotically stable or is sweep-
ing with respect to compact sets. �

Lemma 3.6 If R̃0 > 1, then the semigroup {P (t)}t≥0 is asymptotically stable.

Proof.We will construct a nonnegative C2-function V and a closed set U ∈ Σ such that

sup
x/∈U

L ∗V (x) < 0. (24)

Such a function is called a Khasminskĭı function in [22]. The existence of a Khasminskĭı
function implies that the semigroup is not sweeping from the set U .

Consider the function

H(x, y) = − log x− r(log y − β

b+ δ
(1− x− y))− log(1− x− y)− log(x+ y −m1), (x, y) ∈ G.

where r is a positive constant satisfied

2(b+ δ) + β +
σ2

2
+ αm2 − r(b+ α + γ)(R̃0 − 1) = −2. (25)
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The function H(x, y) satisfies

∂H

∂x
= −1

x
+

1

1− x− y
− 1

x+ y −m1

− rβ

b+ δ
= 0,

and
∂H

∂y
= −r

y
+

1

1− x− y
− 1

x+ y −m1

− rβ

b+ δ
= 0.

From the above equations, we can deduce y = rx. Then

f(x) =
∂H

∂x
= −1

x
+

1

1− (r + 1)x
− 1

(r + 1)x−m1

− rβ

b+ δ
= 0.

It is not difficult to know f(x) is a monotonic increasing function and f( m1

r+1
) = −∞,

f( 1
r+1

) = +∞. So H(x, y) attains its minimum value at the only stable point (θ, rθ), and

H(x, y) ≥ H(θ, rθ).

We construct a Lyapunov function V : G→ R̄+ by

V (x, y) = H(x, y)−H(θ, rθ)

= − log x− r(log y − β

b+ δ
(1− x− y))− log(1− x− y)

− log(x+ y −m1)−H(θ, rθ)
= V1 + rV2 + V3 + V4 −H(θ, rθ).

where V1 = − log x, V2 = −r(log y − β

b+ δ
(1 − x − y)), V3 = log(1 − x − y) and V4 =

− log(x+ y −m1). Applying the Itô’s formula, we obtain

L ∗V1 = −b+ δ

xt
+ (b+ δ) + (β − α)yt +

δyt
xt

+
σ2y2

t

2

= −b+ δ(1− yt)
xt

+ (b+ δ) + (β − α)yt +
σ2y2

t

2
,

L ∗V2 = −r(β − (b+ α+ γ)− σ2x2
t

2
+ αyt −

β(b+ α+ γ + δ)yt
b+ δ

+
βαyt
b+ δ

(xt + yt))

≤ −r(β − (b+ α+ γ)− σ2x2
t

2
− βyt(1 +

α+ γ

b+ δ
)),

L ∗V3 =
1

1− xt − yt
(−γyt + (b+ δ)(1− xt − yt)− αyt(1− xt − yt))

= − γyt
1− xt − yt

+ (b+ δ)− αyt,

by (14),

L ∗V4 = − 1

xt + yt −m1
((b+ δ)(1− xt)− (b+ α+ γ + δ)yt + αyt(xt + yt))

= − 1

xt + yt −m1
(−α(xt + yt −m1)(m2 − xt − yt) + xt(α(1− xt − yt) + γ))

= α(m2 − xt − yt) + αxt −
(α(1−m1) + γ)xt
xt + yt −m1

= αm2 − αyt −
(α(1−m1) + γ)xt
xt + yt −m1

.
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Then
L ∗V = L ∗V1 + L ∗V2 + L ∗V3 + L ∗V4.

Define a closed set

Uε,κ = {(x, y) ∈ G : ε ≤ x ≤ 1− ε, ε ≤ y ≤ 1− ε,m1 + κ ≤ x+ y ≤ 1− κ}, (26)

where ε, κ > 0 are two small numbers such that

rεβ(1 +
α + γ

b+ δ
) < −1, (27)

− b

ε
+ 2(b+ δ) + β +

σ2

2
+ αm2 + r((b+ α + γ) +

1

2
σ2ε2 + β(1 +

α + γ

b+ δ
)) < −1, (28)

− r

ε
+ 2(b+ δ) + β +

σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
) < −1, (29)

and

− α(1−m1) + γ

ε
+ 2(b+ δ) + β +

σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
) < −1. (30)

Denote

D1
ε,κ = {(x, y) ∈ G : 0 < x < ε}, D2

ε,κ = {(x, y) ∈ G : 0 < y < ε},

D3
ε,κ = {(x, y) ∈ G : ε ≤ x < 1, ε ≤ y < 1, 1− κ < x+ y < 1},

D4
ε,κ = {(x, y) ∈ G : ε ≤ x < 1, ε ≤ y < 1,m1 < x+ y < m1 + κ}.

Then G \ Uε,κ = D1
ε,κ

⋃
D2
ε,κ

⋃
D3
ε,κ

⋃
D4
ε,κ. In the following, we consider four cases:

Case 1. On D1
ε,κ, we have

L ∗V1 ≤ −
b

ε
+ (b+ δ) + β +

σ2

2
,

L ∗V2 ≤ −r(β − (b+ α + γ)− 1

2
σ2ε2) + rβ(1 +

α + γ

b+ δ
)

≤ r((b+ α + γ) +
1

2
σ2ε2 + β(1 +

α + γ

b+ δ
)),

(31)

L ∗V3 ≤ b+ δ

and

L ∗V4 = αm2 − αyt −
(α(1−m1) + γ)xt
xt + yt −m1

≤ αm2.

Then
L ∗V = L ∗V1 + L ∗V2 + L ∗V3 + L ∗V4

≤ −b
ε

+ 2(b+ δ) + β +
σ2

2
+ αm2 + r((b+ α + γ) +

1

2
σ2ε2

+β(1 +
α + γ

b+ δ
))

Noting that ε satisfied (28), so we can obtain

L ∗V < −1, (x, y) ∈ D1
ε,κ.
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Case 2. On D2
ε,κ, we get

L ∗V ≤ 2(b+ δ) + β +
σ2

2
+ αm2 − r(β − (b+ α + γ)− 1

2
σ2)

+
rβ(b+ α + γ + δ)ε

b+ δ

= 2(b+ δ) + β +
σ2

2
+ αm2 − r(b+ α + γ)(R̃0 − 1) + rεβ(1 +

α + γ

b+ δ
)

By (25) and (27), we have
L ∗V < −1, (x, y) ∈ D2

ε,κ.

Case 3. On D3
ε,κ, let κ = ε2, from (29), then

L ∗V ≤ −rε
κ

+ 2(b+ δ) + β +
σ2

2
+ αm2 − r(b+ α + γ)(R̃0 − 1)

+rβ(1 +
α + γ

b+ δ
)

≤ −rε
κ

+ 2(b+ δ) + β +
σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
)

≤ −r
ε

+ 2(b+ δ) + β +
σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
)

< −1, (x, y) ∈ D3
ε,κ.

Case 4. On D4
ε,κ, in view of (30), we have

L ∗V ≤ −(α(1−m1) + γ)
ε

κ
+ 2(b+ δ) + β +

σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
)

≤ −α(1−m1) + γ

ε
+ 2(b+ δ) + β +

σ2

2
+ αm2 + rβ(1 +

α + γ

b+ δ
)

< −1.

In summary, on G \ Uε,κ = D1
ε,κ

⋃
D2
ε,κ

⋃
D3
ε,κ

⋃
D4
ε,κ, we get

sup
x∈G\Uε,κ

L ∗V (x) < 0.

According to Lemma A.1, the semigroup {P (t)}t≥0 is asymptotically stable. In another
words, the semigroup has a unique stationary solution on G. This completes the proof.
�

Remark 4 In the proof of lemma 3.6, we take X = Γ. To verify V is a Khasminskĭı
function, it suffices that there exist a closed set U ⊆ Σ ( which lies entirely in Γ) such
that

sup
x/∈U

L ∗V (x) < 0.

4 Simulations

Next we make numerical simulations to illustrate our results by using Milstein’s Higer
Order Method [12]. We assume that the unit of time is one day and the population sizes
are measured in units of 1 million. The parameters in (6) are given by

b = 0.2, β = 0.6, α = 0.1, γ = 0.2, δ = 0.2, σ = 0.1, 4t = 1. (32)
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densityvalue-eps-converted-to.pdf

Figure 1: Based on the 10000 sample pathes, after iterating 10000 times, we get the density
functions of x(t) and y(t) with different initial values. Here b = 0.2, β = 0.6, α = 0.1, γ =
0.2, δ = 0.2, σ = 0.1, 4t = 1.

densitytime-eps-converted-to.pdf

Figure 2: Based on the 10000 sample pathes, after iterating 10000 times, we get the density
functions of x(t) and y(t) with initial value (x(0), y(0)) = (0.4, 0.8). Here b = 0.2, β = 0.6, α =
0.1, γ = 0.2, δ = 0.2, σ = 0.1, 4t = 1.

In this case, the condition of Theorem 3.1 is satisfied. We find that these lines in Figure 1
fit very well which implies that wherever x(t) and y(t) start from, the density functions of
x(t) and y(t) converge to the same functions respectively. Figure 2 indicates that there is
a stationary distribution for system (6). Hence, Figure 1 and Figure 2 approve the result
of theorem 3.1.

A

Since the proof of our result is based on the theory of integral Markov semigroups, we
need some auxiliary definitions and results concerning Markov semigroups (see [23],[24]).

14



For the convenience of the reader, we present these definitions and results in the appendix.
Let the triple (X,Σ,m) be a σ-finite measure space. Denote by D the subset of the space
L1 = L1(X,Σ,m) which contains all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}. (33)

A linear mapping P : L1 → L1 is called a Markov operator if P (D) ⊂ D.

The Markov operator P is called an integral or kernel operator if there exists a
measurable function k : X ×X → [0,∞) such that∫

X

k(x, y)m(dx) = 1 (34)

for all y ∈ X and

Pf(x) =

∫
X

k(x, y)f(y)m(dy)

for every density f .

A family {P (t)}t≥0 of Markov operators which satisfies conditions:

(1) P (0) = Id,
(2) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(3) for each f ∈ L1 the function t 7→ P (t)f is continuous with respect to the L1 norm,

is called a Markov semigroup. A Markov semigroup {P (t)}t≥0 is called integral, if for
each t > 0, the operator P (t) is an integral Markov operator.

We also need two definitions concerning the asymptotic behaviour of a Markov semi-
group. A density f∗ is called invariant if P (t)f∗ = f∗ for each t > 0. The Markov
semigroup {P (t)}t≥0 is called asymptotically stable if there is an invariant density f∗ such
that

lim
t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D.

A Markov semigroup {P (t)}t≥0 is called sweeping with respect to a set A ∈ Σ if for
every f ∈ D

lim
t→∞

∫
A

P (t)f(x)m(dx) = 0.

We need some result concerning asymptotic stability and sweeping which can be found in
[23] (see Corollary 1).

Lemma A.1 Let X be a metric space and Σ be the σ-algebra of Borel sets. Let {P (t)}t≥0

be an integral Markov semigroup with a continuous kernel k(t, x, y) for t > 0, which
satisfies (34) for all y ∈ X. We assume that for every f ∈ D we have∫ ∞

0

P (t)fdt > 0 a.e.

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P (t)}t≥0 is asymptotically stable or sweeping
for a sufficiently large family of sets (e.g. for all compact sets) is called the Foguel
alternative.
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Lemma A.2.(Strong Law of Large Numbers) Let M = {Mt}t≥0 be a real-value contin-
uous local martingale vanishing at t = 0. Then

lim
t→∞
〈M,M〉t =∞ a.s.⇒ lim

t→∞

Mt

〈M,M〉t
= 0. a.s.

and also

lim sup
t→∞

〈M,M〉t
t

<∞ a.s.⇒ lim
t→∞

Mt

t
= 0. a.s.
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stochastic perturbation on prey-predator systems, Math. Biosci., 206 (2007), 108–
119.

17



[25] D. W. Stroock and S. R. S. Varadhan, On the Support of Diffusion Processes with
Applications to the Strong Maximum Principle, Proc. Sixth Berkeley Symposium
on Mathematical Statistics and Probability, vol. III, University of California Press,
Berkeley, 1972.

[26] S. Aida, S. Kusuoka and D. Strook, On the Support of Diffusion Processes with
Applications to the Strong Maximum Principle, Proc. Sixth Berkeley Symposium
on Mathematical Statistics and Probability, University of California Press, Berkeley,
1972.

[27] (MR2869744) [10.1016/j.jmaa.2011.11.072] ( MR2869744) Q. Yang, D. Jiang and
N. Shi, The ergodicity and extinction of stochastically perturbed SIR and SEIR
epidemic models with saturated incidence, Journal of Mathematical Analysis and
Applications, 388 (2012), 248–271.

[28] (MR3212235) [10.1016/j.aml.2013.11.002] Y. Zhao and D. Jiang, The threshold of
a stochastic SIRS epidemic model with saturated incidence, Applied Mathematical
Letter, 34 (2014), 90–93.

[29] (MR3315497) [10.3934/dcdsb.2015.20.1277] Y. Zhao, D. Jiang, X. Mao and A. Gray,
The threshold of a stochastic SIRS epidemic model in a population with varying size,
Discrete Continuous Dynam. Systems - B, 20 (2015), 1277–1295.

[30] (MR3093154) [10.1016/j.physa.2013.06.009] Y. Zhao, D. Jiang and D. O’Regan, The
extinction and persistence of the stochastic SIS epidemic model with vaccination,
Physica A, 392 (2013), 4916–4927.

18


	Introduction
	Preliminaries
	The stationary distribution of the solution
	Simulations
	

