
This version is available at https://strathprints.strath.ac.uk/57503/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
Discovery and structure-activity relationships of a novel isothiazolone class of bacterial type II topoisomerase inhibitors

Redx Pharma, Alderley Park, Cheshire, SK10 4TG, United Kingdom

Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden

*Corresponding author. E-mail: i.cooper@redxpharma.com

Keywords: ESKAPE pathogens; anti-infectives; topoisomerases; DNA gyrase; isothiazolone

Antibiotic resistance is becoming an increasingly urgent threat to public health in both a clinical and community setting. Failure to combat this crisis is predicted to have catastrophic human and economic consequences, potentially leading to 10 million extra deaths per year by 2050 and costing the global economy up to 100 trillion USD. The “ESKAPE” group of pathogens (comprising Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) are of particular concern.

Fluoroquinolones are an important class of bacterial type II topoisomerase (DNA gyrase and topoisomerase IV) inhibitors that show broad-spectrum activity and are highly effective in the clinic. In recent years however, the worldwide emergence of fluoroquinolone resistance has raised serious concerns regarding the future utility of this drug class. Resistance occurs via a range of mechanisms including target-site gene mutations, overexpression of multi-drug resistance efflux pumps, modifying enzymes and target protection proteins.

These factors have increased the need to develop new classes of antibiotics that tackle the issue of bacterial resistance. One approach is to identify and explore novel targets with no pre-existing antimicrobial resistance. Issues surrounding target validation along with a lack of physicochemical diversity within screening collections has hindered progress in this area. An alternative approach is to explore clinically validated targets for new compounds that show limited or no cross-resistance to existing antibiotics. This avenue removes the risk of target validation and has been employed effectively within several drug classes.

Recent reports have described the use of isothiazoloquinolones and isothiazolopyridones as DNA gyrase inhibitors and some have displayed excellent antimicrobial activity. Redx Pharma reports herein the synthesis, structure-activity relationships and in vitro evaluation of a novel class of isothiazolone inhibitors of bacterial type II topoisomerase. A compound from this series has recently been reported to display balanced inhibition of both the supercoiling activity of DNA gyrase and the decatenation function of topoisomerase IV.
The synthetic route to compounds 7a-o was designed to allow the late stage introduction of chemical diversity via manipulation of the chloro substituent within compound 6 (Scheme 1). Starting material 1 was converted to the tert-butyl imine and reacted with triethyl methanetricarboxylate to afford the pyridone 2. Chlorination and subsequent displacement with potassium thioacetate afforded thiol 4. Treatment with hydroxylamine-O-sulfonic acid generated the isothiazolone ring system 5. Trial coupling reactions using intermediate 5 were poor yielding. Protection of the amide groups with TIPS-Cl to afford 6 allowed the coupling reaction to proceed with improved yields. The protecting group was removed during the work up procedure.

\[
\text{Scheme 1. General synthesis of isothiazolones. Reagents and conditions: (i) tert-butylamine, Ti(Cl)\textsubscript{4}, DCM, rt, 75\% (ii) CH(CO\textsubscript{2}Et)\textsubscript{3}, (Ph)\textsubscript{2}O, 160^\circ\text{C}, 53\% (iii) (COCl)\textsubscript{2}, DCM, rt, 89\% (iv) potassium thioacetate, DMF, rt, 78\% (v) hydroxylamine-O-sulfonic acid, THF/H\textsubscript{2}O, K\textsubscript{3}PO\textsubscript{4}, rt, 79\%(vi) triisopropylsilyl trifluoromethylsulfonate, 2,6-lutidine, rt, 57\% (vii) amine, sodium tert-butoxide, Pd\textsubscript{2}(dba)\textsubscript{3}, (2-biphenyl)di-tert-butyldiphosphine, toluene, 100^\circ\text{C}, 4 - 40\%.
\]

Regioisomers 8a-c were prepared in a similar fashion from the corresponding isomeric starting materials.

\[
\text{Figure 1. Ciprofloxacin}
\]

The route to prepare derivative 14 involved incorporation of the indazole at an early stage (Scheme 2). Bromo-indazole 9 was lithiated and treated with N-methoxy-N-methyl butanamide to afford ketone 10. An analogous sequence of steps to Scheme 1 was then followed to afford the final product 14.
Scheme 2. Synthesis of indazole derivative 14. Reagents and conditions: (i) n-BuLi, N-methyl N-methoxy-N-methyl butanamide, THF, -78°C, 44% (ii) tert-butylamine, Ti(Cl)$_4$, DCM, rt, 100% (iii) CH(CO$_2$Et)$_3$, (Ph)$_2$O, 160°C, 43% (iv) (COCl)$_2$, DCM, rt, 82% (v) potassium thioacetate, DMF, rt, 65% (vi) hydroxylamine-O-sulfonic acid, THF/H$_2$O, K$_3$PO$_4$, rt, 20%.

The antibacterial activity of these compounds was determined against a panel of Gram-positive and Gram-negative bacterial strains including *S. aureus*, *A. baumannii*, *K. pneumoniae*, *P. aeruginosa* and *E. coli* from the ESKAPE pathogens. Ciprofloxacin, a fluoroquinolone antibiotic, was also included as a positive control (Figure 1). The MICs (Minimum Inhibitory Concentrations), determined as previously described, are reported in Table 1 along with data for the highly sensitive and efflux-deficient (ΔacrA) *E. coli* N43 strain.16,17

Table 1: In vitro antibacterial activity (MIC, µg/mL) of ciprofloxacin and isothiazolone compounds.

<table>
<thead>
<tr>
<th>List</th>
<th>R</th>
<th>Ab</th>
<th>Kp</th>
<th>Pa</th>
<th>Sa</th>
<th>Ec</th>
<th>Ec N43</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP</td>
<td>64</td>
<td>0.25</td>
<td>1</td>
<td>0.25</td>
<td>0.03</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>128</td>
<td>>128</td>
<td>8</td>
<td>16</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0.5</td>
<td>0.015</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>0.5</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>7d</td>
<td>16</td>
<td>2</td>
<td>0.06</td>
<td>0.12</td>
<td>0.008</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>MIC (μg/mL)</td>
<td>Zone (mm)</td>
<td>Zone (mm)</td>
<td>Zone (mm)</td>
<td>Zone (mm)</td>
<td>Zone (mm)</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>7e</td>
<td></td>
<td>64</td>
<td>4</td>
<td>0.06</td>
<td>0.12</td>
<td>0.002</td>
<td>≤0.0001</td>
</tr>
<tr>
<td>7f</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>0.5</td>
<td>0.06</td>
</tr>
<tr>
<td>7g</td>
<td></td>
<td>64</td>
<td>64</td>
<td>32</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7h</td>
<td></td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.008</td>
</tr>
<tr>
<td>7i</td>
<td></td>
<td>>128</td>
<td>32</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.008</td>
</tr>
<tr>
<td>7j</td>
<td></td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>16</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>7k</td>
<td></td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>16</td>
<td>16</td>
<td>0.5</td>
</tr>
<tr>
<td>7l</td>
<td></td>
<td>>64</td>
<td>64</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>7m</td>
<td></td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>0.015</td>
<td>0.12</td>
<td>0.008</td>
</tr>
<tr>
<td>7n</td>
<td></td>
<td>32</td>
<td>4</td>
<td>0.5</td>
<td>0.12</td>
<td>0.25</td>
<td>0.03</td>
</tr>
<tr>
<td>7o</td>
<td></td>
<td>>64</td>
<td>>64</td>
<td>4</td>
<td>0.12</td>
<td>0.5</td>
<td>0.12</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2</td>
<td>16</td>
<td>4</td>
<td>0.12</td>
<td>0.5</td>
<td>0.004</td>
</tr>
<tr>
<td>8a</td>
<td></td>
<td>64</td>
<td>>128</td>
<td>>128</td>
<td>32</td>
<td>>64</td>
<td>8</td>
</tr>
<tr>
<td>8b</td>
<td></td>
<td>>128</td>
<td>>128</td>
<td>>128</td>
<td>32</td>
<td>N.D</td>
<td>N.D</td>
</tr>
<tr>
<td>8c</td>
<td></td>
<td>>64</td>
<td>>64</td>
<td>>64</td>
<td>64</td>
<td>>64</td>
<td>8</td>
</tr>
</tbody>
</table>

Racemic 7a displayed broad-spectrum activity across most strains tested. The stereochemistry of enantiomers 7b and 7c had a limited effect on the activity.

Removal of one or both methyl groups had a pronounced effect on activity as shown by 7d and 7e. Both compounds demonstrated increased potency against *E. coli* and *P. aeruginosa* in particular but also suffered a corresponding loss of potency against *A. baumannii*. This could be attributed to the increased polarity (Table 3) relative to the dimethyl parent compound 7c causing an increased susceptibility to the efflux pump mechanisms of *A. baumannii*.18

Bicyclic amine analogues gave varying results with both 7f and 7g showing reduced activity. Potency for the 5,6-bicyclic analogue was restored by removal of the methyl group 7h.

In comparison to 7d, homologated analogue 7i displayed reduced activity against all strains except for the *E. coli* N43 efflux-deficient strain. This suggests 7i may retain potency at the enzyme level but suffer from an increased efflux liability.

Switching from a pyrrolidine ring to a 6-membered piperidine or piperazine was detrimental to activity as shown for 7j, 7k and 7l. The reduced activity against the *E. coli* N43 strain was considered to be indicative of reduced enzyme activity.

A series of non-basic compounds were prepared and showed retention of activity in many Gram-negative strains. Hydroxyl analogues 7m and 7n retained good activity against *S. aureus*, *E. coli* and *P. aeruginosa*. Difluoro analogue 7o retained reasonable potency against several strains and showed a low efflux ratio between *E. coli* N43 and its isogenic parent *E. coli* W4573. Indazole analogue 14 retained broad-spectrum activity.

Meta substitution was detrimental to activity as shown by examples 8a, 8b and 8c. Again, this was attributed to reduced enzyme activity as indicated by the relatively elevated MICs against the efflux-deficient *E. coli* N43 strain.

Point mutations within the QRDR (quinolone-resistance determining region) of *gyrA*, *gyrB*, *parC* and/or *parE* are a common source of fluoroquinolone resistance with mutations at S83 and D87 of GyrA being particularly prevalent.19 Representative compounds, 7a, 7g and 14, were tested against a panel of isogenic laboratory strains of *E. coli* bearing multiple target specific mutations (e.g. LM693) and efflux mutations (e.g. LM367).20 All compounds, including ciprofloxacin, displayed a similar fold change reduction in activity against LM625 and LM367 compared to the isogenic parent strain *E. coli* MG1655 (LM179). However, 7a was observed to show a much less significant decrease in activity against isogenic strains bearing a greater level of mutations (LM693 and LM705) compared to ciprofloxacin. The compounds were further evaluated against a panel of characterised MDR (multi-drug resistant) clinical *E. coli* UTI (urinary tract infection) isolates (CH440, CH460, CH418 and CH448) which also included resistance obtained via horizontal gene transfer. 7a, 7g and 14 all showed a significantly reduced susceptibility to a range of key fluoroquinolone mutations in comparison to ciprofloxacin (Table 2). However, the elevated MIC values for the tested isothiazolones across both panels exposed an underlying level of fluoroquinolone cross-resistance.
Table 2: Antibacterial activity (MIC, µg/mL) of ciprofloxacin and selected compounds against E. coli mutant strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>genotype</th>
<th>MIC (µg/mL)</th>
<th>CIP fold x WT</th>
<th>7a fold x WT</th>
<th>7g fold x WT</th>
<th>14 fold x WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM179<sup>a</sup></td>
<td>Wild-type</td>
<td>0.016</td>
<td>0.5</td>
<td>4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>LM625<sup>a</sup></td>
<td>GyrA S83L D87N</td>
<td>0.25</td>
<td>16</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LM367<sup>a</sup></td>
<td>ΔmarR, ΔacrR</td>
<td>0.12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LM693<sup>a</sup></td>
<td>GyrA S83L D87N, ParC S80I</td>
<td>32</td>
<td>2000</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>LM705<sup>a</sup></td>
<td>GyrA S83L D87N, ParC S80I, ΔmarR, ΔacrR</td>
<td>64</td>
<td>4000</td>
<td>64</td>
<td>128</td>
<td>>64</td>
</tr>
<tr>
<td>CH440<sup>b</sup></td>
<td>GyrA S83L D87N, ParC S80I E84V, aac(6')-Ib-cr<sup>c</sup></td>
<td>>64</td>
<td>>4000</td>
<td>16</td>
<td>32</td>
<td>>64</td>
</tr>
<tr>
<td>CH460<sup>b</sup></td>
<td>GyrA S83L D87N, ParC S80I E84V, qepA<sup>c</sup></td>
<td>>64</td>
<td>>4000</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>CH418<sup>b</sup></td>
<td>GyrA S83L D87N, ParC S80I E84G, qnrA<sup>c</sup></td>
<td>64</td>
<td>4000</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>CH448<sup>b</sup></td>
<td>GyrA S83L, qnrS<sup>c</sup></td>
<td>32</td>
<td>2000</td>
<td>16</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

^a isogenic laboratory strain ^b MDR clinical UTI isolate ^c relevant genotype

Representative compounds were evaluated for in vitro toxicity as shown in Table 3. No toxic effects were observed in a Hep G2 mammalian cytotoxicity assay for all tested compounds. 7a was measured for hERG inhibition and displayed 84% inhibition at a concentration of 100 µM, with an IC₅₀ of 20 µM. In line with previous literature reports describing the effects of logD and pKa on hERG inhibition, significant reductions in hERG inhibition were measured for both the more polar analogue 7d and the less basic compound 7n, although subtle structural changes could also be playing a role. 21–23

Table 3: In vitro safety profiles of representative isothiazolones and ciprofloxacin

<table>
<thead>
<tr>
<th>Compound</th>
<th>HepG2 (IC50, µg/mL)<sup>a</sup></th>
<th>logD<sub>7.4</sub><sup>b</sup></th>
<th>hERG (% block at 100µM)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIP</td>
<td>>128</td>
<td>N.D</td>
<td>28</td>
</tr>
<tr>
<td>7a</td>
<td>>128</td>
<td>1.4</td>
<td>84 (20)</td>
</tr>
<tr>
<td>7d</td>
<td>>128</td>
<td>1.2</td>
<td>34</td>
</tr>
<tr>
<td>7n</td>
<td>>16</td>
<td>1.5</td>
<td>22</td>
</tr>
</tbody>
</table>

^a Hep G2 cells incubated for 24 h at 37 °C in 5 % CO₂ and viability determined using CellTiter-Glo® (Promega, WI, USA) ^b Partition coefficient (LogD) determined by shake-flask method, using 10 mM phosphate buffer at pH 7.4 and n-octanol ^c Percent block of hERG K⁺ channel measured via IonWorks at 100 µM. Value in parentheses indicates IC₅₀ (µM)
In summary, this paper describes the SAR and *in vitro* evaluation of a novel isothiazolone-based series of bacterial topoisomerase II inhibitors. Broad-spectrum activity was observed for many compounds and representative examples showed a promising *in vitro* safety profile. Examples from the series showed encouraging activity against a panel of MDR clinical *E. coli* UTI isolates in comparison to ciprofloxacin. Further work is required to understand the binding mode of the series and the impact this has on cross-resistance with fluoroquinolones.

Acknowledgements

The research leading to these results was conducted in part with the ND4BB ENABLE Consortium and has received support from the Innovative Medicines Joint Undertaking under Grant Agreement n° 115583, resources which are composed of financial contribution from the European Union’s seventh framework programme (FP7/2007-2013) and EFPIA companies in kind contribution.

Graphical abstract

Broad-spectrum activity:
- MIC (S.aureus) = 0.12 µg/mL
- MIC (E.coli) = 0.12 µg/mL
- MIC (P.aeruginosa) = 0.06 µg/mL

In vitro safety:
- hepG2 = >128 µg/mL
- hERG = 34% @ 100 µM