Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Razumikhin-type theorems on exponential stability of stochastic functional differential equations

Mao, Xuerong (1996) Razumikhin-type theorems on exponential stability of stochastic functional differential equations. Stochastic Processes and their Applications, 65 (2). pp. 233-250. ISSN 0304-4149

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Although the Razumikhin-type theorems have been well developed for the stability of functional differential equations and they are very useful in applications, so far there is almost no result of Razumikhin type on the stability of stochastic functional differential equations. The main aim of this paper is to close this gap by establishing several Razumikhin-type theorems on the exponential stability for stochastic functional differential equations. By applying these new results to stochastic differential delay equations and stochastically perturbed equations we improve or generalize several known results, and this shows the powerfulness of our new results clearly.