
RAZUMIKHIN-TYPE THEOREMS ON EXPONENTIAL STABILITY
OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL

EQUATIONS∗

XUERONG MAO†

SIAM J. MATH. ANAL. c© 1997 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 389–401, March 1997 009

Abstract. Recently, we initiated in [Systems Control Lett., 26 (1995), pp. 245–251] the study
of exponential stability of neutral stochastic functional differential equations, and in this paper, we
shall further our study in this area. We should emphasize that the main technique employed in this
paper is the well-known Razumikhin argument and is completely different from those used in our
previous paper [Systems Control Lett., 26 (1995), pp. 245–251]. The results obtained in [Systems
Control Lett., 26 (1995), pp. 245–251] can only be applied to a certain class of neutral stochastic
functional differential equations excluding neutral stochastic differential delay equations, but the
results obtained in this paper are more general, and they especially can be used to deal with neutral
stochastic differential delay equations. Moreover, in [Systems Control Lett., 26 (1995), pp. 245–251],
we only studied the exponential stability in mean square, but in this paper, we shall also study the
almost sure exponential stability. It should be pointed out that although the results established in
this paper are applicable to more general neutral-type equation, for a particular type of equation
discussed in [Systems Control Lett., 26 (1995), pp. 245–251], the results there are sharper.

Key words. exponential stability, Razumikhin-type theorem, Brownian motion, Doob martin-
gale inequality, Borel–Cantelli lemma

AMS subject classifications. 60H20, 34D08, 60G48

PII. S0036141095290835

1. Introduction. Deterministic neutral functional differential equations and
their stability have been studied by many authors, e.g., Haddock et al. [3], Hale
and Lunel [4], and the references therein. Motivated by the chemical-engineering sys-
tems as well as the theory of aeroelasticity, Kolmanovskii and Nosov [8] introduced
the neutral stochastic functional differential equations of the form

(1.1) d[x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ ∈ L2
F0

([−τ, 0];Rn). (For notation, please see section
2 below.) Kolmanovskii and Nosov [8] not only established the theory of existence and
uniqueness of the solution to (1.1) but also investigated the stability and asymptotic
stability of the equations (see also Kolmanovskii and Myshkis [7]). However, the
exponential stability of such equations has not been studied until recently by the
author in [11]. To be more precise, let us give the definition of exponential stability.

Definition 1.1. Denote by x(t; ξ) the solution of equation (1.1). The trivial
solution of equation (1.1) is said to be exponentially stable in mean square if there
exists a pair of positive constants γ and M such that

E|x(t; ξ)|2 ≤Me−γt sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0,
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or, equivalently,

lim sup
t→∞

1

t
logE|x(t; ξ)|2 ≤ −γ

for all ξ ∈ L2
F0

([−τ, 0];Rn). The trivial solution of equation (1.1) is said to be almost
surely exponentially stable if there is a positive constant γ̄ such that

lim sup
t→∞

1

t
log |x(t; ξ)| ≤ −γ̄ a.s.

for all ξ ∈ L2
F0

([−τ, 0];Rn).
In this paper, we shall further our study in this area. We should emphasize that

the main technique employed in this paper is the well-known Razumikhin argument
(see Razumikhin [13], [14]). To explain this technique, applying Itô’s formula to
eλt|x(t) −G(xt)|2, one may see that to have exponential stability in mean square, it
would require that

(1.2) E
(

2(φ(0)−G(φ))T f(t, φ) + trace[gT (t, φ)g(t, φ)]
)
≤ −λE|φ(0)−G(φ)|2

for all t ≥ 0 and all φ ∈ L2
Ft([−τ, 0];Rn). As a result, one would be forced to

impose very severe restrictions on the functions f(t, φ) and g(t, φ). However, by
the Razumikhin argument, one needs to require that (1.2) hold only for those φ ∈
L2
Ft([−τ, 0];Rn) satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0,

but not necessarily for all φ, where q > 1 is a constant. Hence the restrictions on
the functions f(t, φ) and g(t, φ) can be weakened considerably. This is the basic idea
exploited in this paper.

This main technique of this paper is completely different from those used in our
previous paper [11]. The results obtained in [11] can be applied only to a certain
class of neutral stochastic functional differential equations excluding neutral stochastic
differential delay equations, but the results obtained in this paper are much more
general, and they especially can be used to deal with neutral stochastic differential
delay equations. Moreover, in [11], we only studied the exponential stability in mean
square, but in this paper, we shall also study the almost sure exponential stability. It
should be pointed out that although the results established in this paper are applicable
to more general neutral-type equations, for a particular class of equations discussed in
[11], the results there are sharper. (Please see section 5 below for details.) Of course,
this is not surprising because the results obtained by applying a particular technique
to a particular equation are generally sharper than those obtained by using a general
technique which is applicable to more general equations.

In this paper, the theory of existence and uniqueness of the solutions will first be
introduced very briefly in section 2. The main results of this paper will be shown in
sections 3 and 4, where several useful criteria will be established on the exponential
stability in mean square as well as the almost sure exponential stability for the trivial
solution of equation (1.1). In section 5, we shall compare our new results with the
previous ones obtained in [11]. To show the power of the Razumikhin argument,
the general results established in sections 3 and 4 will be applied to deal with the
exponential stability of neutral stochastic differential delay equations in section 6 and
of linear neutral stochastic functional differential equations in section 7.
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2. Neutral stochastic functional differential equations. Throughout the
paper, unless otherwise specified, we let τ > 0 and C([−τ, 0];Rn) denote the family
of continuous functions ϕ from [−τ, 0] to Rn with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|,
where | · | is the Euclidean norm in Rn. If A is a vector or matrix, its transpose is
denoted by AT . If A is a matrix, its norm ||A|| is defined by ||A|| = sup{|Ax| : |x| = 1}
(without any confusion with ||ϕ||). Moreover, let w(t) = (w1(t), . . . , wm(t))T be an
m-dimensional Brownian motion defined on a complete probability space (Ω,F , P )
with a natural filtration {Ft}t≥0 (i.e., Ft = σ{w(s) : 0 ≤ s ≤ t}). For each t ≥
0, denote by L2

Ft([−τ, 0];Rn) the family of all Ft-measurable C([−τ, 0];Rn)-valued
random variables φ = {φ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0E|φ(θ)|2 < ∞.
Also, define L2

F∞([−τ, 0];Rn) =
⋃
t≥0 L

2
Ft([−τ, 0];Rn). Obviously, C([−τ, 0];Rn) ⊂

L2
F∞([−τ, 0];Rn).

Consider the n-dimensional neutral stochastic functional differential equation

(2.1) d[x(t)−G(xt)] = f(t, xt)dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ. Here

G : C([−τ, 0];Rn)→ Rn, f : R+ × C([−τ, 0];Rn)→ Rn,

g : R+ × C([−τ, 0];Rn)→ Rn×m

are all continuous functionals. Moreover, xt = {x(t + θ) : −τ ≤ θ ≤ 0}, which is
regarded as a C([−τ, 0];Rn)-valued stochastic process, and ξ = {ξ(θ) : −τ ≤ θ ≤
0} ∈ L2

F0
([−τ, 0];Rn). An Ft-adapted process x(t),−τ ≤ t < ∞ (let Ft = F0

for −τ ≤ t ≤ 0), is said to be a solution of equation (2.1) if it satisfies the initial
condition and, moreover, for every t ≥ 0,

(2.1)′ x(t)−G(xt) = ξ(0)−G(ξ) +

∫ t

0

f(s, xs)ds+

∫ t

0

g(s, xs)dw(s).

To ensure the existence and uniqueness of the solution, one of the key hypotheses is
the following:

(H) There is a constant κ ∈ (0, 1) such that

E|G(φ1)−G(φ2)|2 ≤ κ sup
−τ≤θ≤0

E|φ1(θ)− φ2(θ)|2

for all φ1, φ2 ∈ L2
F∞([−τ, 0];Rn).

In addition, we need further hypotheses on f and g. For example, f and g are
uniformly Lipschitz continuous, or they are locally Lipschitz continuous and satisfy
the linear-growth condition. Under these hypotheses, Kolmanovskii and Nosov [8]
showed that there is a unique continuous solution to equation (2.1), and any mo-
ment, especially the second moment, of the solution is finite. Since the existence and
uniqueness of the solution are not the main topic of this paper, we shall not discuss
them in detail. All we need to do in this paper is assume that a unique solution exists
and is continuous and that its second moment is finite. The solution will be denoted
by x(t; ξ).

3. Exponential stability in mean square. In this section, we will investigate
the exponential stability in mean square for the solution of equation (2.1). For the
general theory on stochastic stability, we refer the reader to Arnold [1], Friedman [2],
Has’minskii [5], Mao [9, 10], or Mohammed [12]. For the stability purpose of this
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paper, we always assume that G(0) = 0, f(t, 0) ≡ 0, and g(t, 0) ≡ 0. Therefore,
equation (2.1) admits a trivial solution x(t; 0) ≡ 0. The following Razumikhin-type
theorem gives a sufficient condition for the exponential stability in mean square of
this trivial solution.

Theorem 3.1. Assume that there is a constant κ ∈ (0, 1) such that

(3.1) E|G(φ)|2 ≤ κ sup
−τ≤θ≤0

E|φ(θ)|2, φ ∈ L2
F∞([−τ, 0];Rn).

Let q > (1−
√
κ)−2. Assume furthermore that there is a λ > 0 such that

(3.2) E
(

2(φ(0)−G(φ))T f(t, φ) + trace[gT (t, φ)g(t, φ)]
)
≤ −λE|φ(0)−G(φ)|2

for all t ≥ 0 and those φ ∈ L2
Ft([−τ, 0];Rn) satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0.

Then for all ξ ∈ L2
F0

([−τ, 0];Rn),

(3.3) E|x(t; ξ)|2 ≤ q(1 +
√
κ)2e−γ̄t sup

−τ≤θ≤0
E|ξ(θ)|2, t ≥ 0,

where

(3.4) γ̄ = min

{
λ,

1

τ
log

[
q

(1 +
√
qκ)2

]}
> 0.

In other words, the trivial solution of equation (2.1) is exponentially stable in mean
square.

In order to prove this theorem, let us present two useful lemmas.
Lemma 3.2. Let (3.1) hold for some κ ∈ (0, 1). Then

E|φ(0)−G(φ)|2 ≤ (1 +
√
k)2 sup
−τ≤θ≤0

E|φ(θ)|2

for all φ ∈ L2
F∞([−τ, 0];Rn).

Proof. For any ε > 0,

E|φ(0)−G(φ)|2 ≤ E|φ(0)|2 + 2E
(
|φ(0)||G(φ)|

)
+ E|G(φ)|2

≤ (1 + ε)E|φ(0)|2 + (1 + ε−1)E|G(φ)|2

≤
[
1 + ε+ κ(1 + ε−1)

]
sup

−τ≤θ≤0
E|φ(θ)|2.

Therefore, the desired result follows by taking ε =
√
κ. The proof is complete.

Lemma 3.3. Let (3.1) hold for some κ ∈ (0, 1). Let ρ ≥ 0 and 0 < γ <
τ−1 log(1/κ). Let x(t) be a solution of equation (2.1). If

(3.5) eγtE|x(t)−G(xt)|2 ≤ (1 +
√
κ)2 sup
−τ≤θ≤0

E|x(θ)|2

for all 0 ≤ t ≤ ρ, then

(3.6) eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|x(θ)|2.
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Proof. Let κeγτ < ε < 1. For 0 ≤ t ≤ ρ, note that

E|x(t)−G(xt)|2 ≥ E|x(t)|2 − 2E
(
|x(t)||G(xt)|

)
+ E|G(xt)|2

≥ (1− ε)E|x(t)|2 − (ε−1 − 1)E|G(xt)|2.

Hence

E|x(t)|2 ≤ 1

1− εE|x(t)−G(xt)|2 +
κ

ε
sup

−τ≤θ≤0
E|x(t+ θ)|2.

By condition (3.5), we then derive that for all 0 ≤ t ≤ ρ,

eγtE|x(t)|2 ≤ 1

1− ε sup
0≤t≤ρ

[
eγtE|x(t)−G(xt)|2

]
+
κ

ε
sup

0≤t≤ρ

[
eγt sup
−τ≤θ≤0

E|x(t+ θ)|2
]

≤ (1 +
√
κ)2

1− ε sup
−τ≤θ≤0

E|x(θ)|2 +
κeγτ

ε
sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
.

However, this holds for all −τ ≤ t ≤ 0 as well. Therefore,

sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
≤ (1 +

√
κ)2

1− ε sup
−τ≤θ≤0

E|x(θ)|2 +
κeγτ

ε
sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
.

Since 1 > κeγτ/ε, we see that

sup
−τ≤t≤ρ

[
eγtE|x(t)|2

]
≤ ε(1 +

√
κ)2

(1− ε)(ε− κeγτ )
sup

−τ≤θ≤0
E|x(θ)|2.

The required assertion (3.6) follows by taking ε =
√
κeγτ . The proof is com-

plete.
We can now begin to prove Theorem 3.1.
Proof of Theorem 3.1. First, note that q/(1 +

√
qκ)2 > 1 since q > (1 −

√
k)−2

and hence γ̄ > 0. Now fix any ξ ∈ L2
F0

([−τ, 0];Rn) and simply write x(t; ξ) = x(t).
Without any loss of generality, we may assume that sup−τ≤θ≤0E|ξ(θ)|2 > 0. Let
γ ∈ (0, γ̄) arbitrarily. It is easy to show that

(3.7) 0 < γ < min

{
λ,

1

τ
log
( 1

κ

)}
and q >

eγτ

(1−
√
κeγτ )2

.

We now claim that

(3.8) eγtE|x(t)−G(xt)|2 ≤ (1 +
√
κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2 for all t ≥ 0.

If so, an application of Lemma 3.3 to (3.8) yields that

eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|ξ(θ)|2 ≤ q(1 +
√
κ)2 sup
−τ≤θ≤0

E|x(θ)|2

for all t ≥ 0, where we have used (3.7), and the desired result (3.3) follows by letting
γ → γ̄. The remainder of the proof is to show (3.8) by contradiction. Suppose (3.8)
is not true. Then in view of Lemma 3.2, there is a ρ ≥ 0 such that

(3.9) eγtE|x(t)−G(xt)|2 ≤ eγρE|x(ρ)−G(xρ)|2 = (1 +
√
κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2
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for all 0 ≤ t ≤ ρ and, moreover, there is a sequence of {tk}k≥1 such that tk ↓ ρ and

(3.10) eγtkE|x(tk)−G(xtk)|2 > eγρE|x(ρ)−G(xρ)|2.

Applying Lemma 3.3, we derive from (3.9) that

eγtE|x(t)|2 ≤ (1 +
√
κ)2

(1−
√
κeγτ )2

sup
−τ≤θ≤0

E|x(θ)|2

=
eγρ

(1−
√
κeγτ )2

E|x(ρ)−G(xρ)|2

for all −τ ≤ t ≤ ρ. Particularly,

(3.11) E|x(ρ+ θ)|2 ≤ eγτ

(1−
√
κeγτ )2

E|x(ρ)−G(xρ)|2 < qE|x(ρ)−G(xρ)|2

for all −τ ≤ θ ≤ 0, where (3.7) has been used once again. By assumption (3.2), we
then have

E
(

2(x(ρ)−G(xρ))
T f(ρ, xρ) + trace[gT (ρ, xρ)g(ρ, xρ)]

)
≤ −λE|x(ρ)−G(xρ)|2.

Recalling γ < λ, we see by the continuity of the solution and the functionals G, f , and
g (this is the standing hypothesis in this paper) that for all sufficiently small h > 0,

E
(

2(x(t)−G(xt))
T f(t, xt) + trace[gT (t, xt)g(t, xt)]

)
≤ −γE|x(t)−G(xt)|2

if ρ ≤ t ≤ ρ+ h. Now by Itô’s formula, for all sufficiently small h > 0,

(3.12)

eγ(ρ+h) E|x(ρ+ h)−G(xρ+h)|2 − eγρE|x(ρ)−G(xρ)|2

=

∫ ρ+h

ρ

eγt
[
γE|x(t)−G(xt)|2

+E
(

2(x(t)−G(xt))
T f(t, xt) + trace[gT (t, xt)g(t, xt)]

)]
dt

≤ 0;

however, this contradicts (3.10), so (3.8) must hold. The proof is now com-
plete.

4. Almost sure exponential stability. In this section, we discuss the almost
sure exponential stability for the neutral stochastic functional differential equations.
It will be shown that under the linear-growth condition, the exponential stability in
mean square implies the almost sure exponential stability.

Theorem 4.1. Let (3.1) hold for some κ ∈ (0, 1). Assume that there exists a
positive constant K > 0 such that

(4.1) E
(
|f(t, φ)|2 + trace

[
gT (t, φ)g(t, φ)

])
≤ K sup

−τ≤θ≤0
E|φ(θ)|2

for all t ≥ 0 and φ ∈ L2
F∞([−τ, 0];Rn). Assume also that the trivial solution of

equation (2.1) is exponentially stable in mean square, that is, there exists a pair of
positive constants γ and M such that

(4.2) E|x(t; ξ)|2 ≤Me−γt sup
−τ≤θ≤0

E|ξ(θ)|2, t ≥ 0,
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for all ξ ∈ L2
F0

([−τ, 0];Rn). Then

(4.3) lim sup
t→∞

1

t
log |x(t; ξ)| ≤ − γ̄

2
a.s.,

where γ̄ = min{γ, τ−1 log(1/κ)}, that is, the trivial solution of equation (2.1) is also
almost surely exponentially stable. In particular, if (3.1), (3.2), and (4.1) hold, then
the trivial solution of equation (2.1) is almost surely exponentially stable.

To prove the theorem, we need to present another lemma which is very useful
in the study of the almost sure exponential stability of neutral stochastic functional
differential equations.

Lemma 4.2. Assume that there exists a constant κ ∈ (0, 1) such that

(4.4) |G(ϕ)|2 ≤ κ sup
−τ≤θ≤0

|ϕ(θ)|2, ϕ ∈ C([−τ, 0];Rn).

Let z : [−τ,∞)→ Rn be a continuous function. Let 0 < γ < τ−1 log(1/κ) and H > 0.
If

(4.5) |z(t)−G(zt)|2 ≤ He−γt for all t ≥ 0,

then

(4.6) lim sup
t→∞

1

t
log |z(t)| ≤ −γ

2
.

Proof. Choose any ε ∈ (κeγτ , 1). In the same way as in the proof of Lemma 3.3,
we can show that for any T > 0,

sup
0≤t≤T

[
eγt|z(t)|2

]
≤ H

1− ε +
κeγτ

ε
sup

−τ≤t≤T

[
eγt|z(t)|2

]
.

It then follows that(
1− κeγτ

ε

)
sup

0≤t≤T

[
eγt|z(t)|2

]
≤ H

1− ε +
κeγτ

ε
sup
−τ≤t≤0

|z(t)|2.

Consequently,

lim sup
t→∞

1

t
log |z(t)| ≤ −γ

2
,

as required. The proof is complete.
Proof of Theorem 4.1. First, note that condition (4.1) implies condition (4.4) since

C[−τ ; 0];Rn) ⊂ L2
F∞([−τ, 0];Rn). Now fix any initial data ξ and write the solution

x(t; ξ) = x(t) simply. By the well-known Doob martingale inequality (cf. Karatzas
and Shreve [6]), the Hölder inequality, and condition (4.2), we can easily derive that
for any integer k ≥ 1,
(4.7)

E

(
sup

0≤θ≤τ
|x(kτ + θ)−G(xkτ+θ)|2

)
≤ 3E|x(kτ)−G(xkτ )|2 + 3K(τ + 4)

∫ (k+1)τ

kτ

(
sup

−τ≤θ≤0
E|x(s+ θ)|2

)
ds

≤
(

6M(1 + κ)e−γ̄(kτ−τ) + 3K(τ + 4)M

∫ (k+1)τ

kτ

e−γ̄(s−τ)ds

)[
sup

−τ≤θ≤0
E|ξ(θ)|2

]
≤ Ce−γ̄kτ ,
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where C = 3Meγ̄τ
[
2(1+κ)+K(τ+4)

]
sup−τ≤θ≤0E|ξ(θ)|2. Let ε ∈ (0, γ̄) be arbitrary.

It then follows from (4.7) that

P

(
ω : sup

0≤θ≤τ
|x(kτ + θ)−G(xkτ+θ)|2 > e−(γ̄−ε)kτ

)
≤ Ce−εkτ .

In view of the well-known Borel–Cantelli lemma, we see that for almost all ω ∈ Ω,

(4.8) sup
0≤θ≤τ

|x(kτ + θ)−G(xkτ+θ)|2 ≤ e−(γ̄−ε)kτ

holds for all but finitely many k. Hence for all ω ∈ Ω excluding a P -null set, there
exists a ko(ω) for which (4.8) holds whenever k ≥ ko. In other words, for almost all
ω ∈ Ω,

|x(t)−G(xt)|2 ≤ e−(γ̄−ε)(t−τ) if t ≥ koτ.

However, |x(t) − G(xt)|2 is finite on [0, koτ ]. Therefore, for almost all ω ∈ Ω, there
exists a finite number H = H(ω) such that

|x(t)−G(xt)|2 ≤ He−(γ̄−ε)t for all t ≥ 0.

An application of Lemma 4.2 now yields

lim sup
t→∞

1

t
log |x(t)| ≤ − γ̄ − ε

2
a.s.,

and the desired result (4.3) follows by letting ε→ 0. The proof is complete.

5. Comparison with existing results. Recently, in [11], we studied the expo-
nential stability in mean square for a class of neutral stochastic functional differential
equations using a completely different technique from the one in this paper. The aim
of this section is to compare our previous results in [11] with our new results in this
paper. The equation studied in [11] is of the form

(5.1) d[x(t)−G(xt)] = [f1(t, x(t)) + f2(t, xt)]dt+ g(t, xt)dw(t)

on t ≥ 0 with initial data x0 = ξ, where f1 : R+ × Rn → Rn, f2 : R+ × C([−τ, 0];Rn)
→ Rn, and G and g are the same as before. Let us first state a useful result.

Theorem 5.1. Let (3.1) hold. Assume that there are two positive constants λ1

and λ2 such that

(5.2)

E
(

2(φ(0)−G(φ ))T [f1(t, φ(0)) + f2(t, φ)] + trace[gT (t, φ)g(t, φ)]
)

≤ −λ1E|φ(0)|2 + λ2 sup
−τ≤θ≤0

E|φ(θ)|2

for all t ≥ 0 and φ ∈ L2
F∞([−τ, 0];Rn). If

(5.3) 0 < κ <
1

4
and λ1 >

λ2

(1− 2
√
κ)2

,

then the trivial solution of equation (5.1) is exponentially stable in mean square.
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Proof. By condition (5.3), we can choose q such that

(5.4)
1

κ
> q >

1

(1−
√
κ)2

and λ1 >
λ2q

(1−√κq)2
.

By defining f(t, ϕ) = f1(t, ϕ(0)) + f2(t, ϕ) for t ≥ 0 and ϕ ∈ C([−τ, 0];Rn), equation
(5.1) can be written as equation (2.1), so all that we need to do is verify condition
(3.2). To do so, let t ≥ 0 and φ ∈ L2

Ft([−τ, 0];Rn), satisfying

E|φ(θ)|2 < qE|φ(0)−G(φ)|2, −τ ≤ θ ≤ 0.

Note that for any ε > 0,

(5.5) −E|φ(0)|2 ≤ − 1

1 + ε
E|φ(0)−G(φ)|2 +

1

ε
E|G(φ)|2.

It then follows from (5.2) and (5.5) that

(5.6)

E
(

2(φ(0)−G(φ))T [f1(t, φ(0)) + f2(t, φ)] + trace[gT (t, φ)g(t, φ)]
)

≤ −λ1E|φ(0)|2 + λ2 sup
−τ≤θ≤0

E|φ(θ)|2

≤ −
[
λ1

( 1

1 + ε
− κq

ε

)
− λ2q

]
E|φ(0)−G(φ)|2.

In particular, choose ε =
√
κq/(1−√κq) and hence[

λ1

( 1

1 + ε
− κq

ε

)
− λ2q

]
= λ1(1−√κq)2 − λ2q > 0,

where we have used (5.4). In other words, condition (3.2) is satisfied and hence the
conclusion follows from Theorem 3.1. The proof is complete.

To compare this result with one in our previous paper [11], let us introduce
another new notation W([−τ, 0];R+), which is the family of all Borel-measurable

bounded nonnegative functions η(θ) defined on −τ ≤ θ ≤ 0 such that
∫ 0

−τ η(θ)dθ = 1.
In [11], conditions (3.1) and (5.2) were strengthened as follows: There is a constant
κ ∈ (0, 1) and a function η1 ∈ W([−τ, 0];R+) such that

(5.7) |G(ϕ)|2 ≤ κ
∫ 0

−τ
η1(θ)|ϕ(θ)|2dθ for all ϕ ∈ C([−τ, 0];Rn);

moreover, there exists a function η2(.) ∈ W([−τ, 0];R+) and two positive constants
λ1 and λ2 such that

(5.8)

2(ϕ(0)−G(ϕ ))T [f1(t, ϕ(0)) + f2(t, ϕ)] + trace[gT (t, ϕ)g(t, ϕ)]

≤ −λ1|ϕ(0)|2 + λ2

∫ 0

−τ
η2(θ)|ϕ(θ)|2dθ

for all t ≥ 0 and ϕ ∈ C([−τ, 0];Rn). These two conditions are indeed stronger
than (3.1) and (5.2), respectively. For example, if (5.7) holds, then for any φ ∈
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L2
F∞([−τ, 0];Rn),

E|G(φ)|2≤ κ
∫ 0

−τ
η1(θ)E|φ(θ)|2dθ

≤ κ sup
−τ≤θ≤0

E|φ(θ)|2
∫ 0

−τ
η1(θ)dθ = κ sup

−τ≤θ≤0
E|φ(θ)|2,

that is, (3.1) holds. However, what we gained in [11] with this price paid is the
following sharper result.

Theorem 5.2 (Mao [11]). Let (5.7) and (5.8) hold. If λ1 > λ2 and κ ∈ (0, 1),
then the trivial solution of equation (5.1) is exponentially stable in mean square.

Obviously, λ1 > λ2 and κ ∈ (0, 1) are much sharper than (5.3). The disadvantage
of Theorem 5.2 is that (5.7) and (5.8) are somehow too restricted. For instance, Theo-
rem 5.2 is not applicable to the case of neutral stochastic differential delay equations.
However, Theorem 5.1 can be applied to deal with the delay case easily. Let us now
turn to this topic.

6. Neutral stochastic differential delay equations. As an application, let
us apply the theory established in the previous sections to deal with the exponential
stability of neutral stochastic differential delay equations of the form

(6.1) d[x(t)− Ḡ(x(t− τ))] = f̄(t, x(t), x(t− τ))dt+ ḡ(t, x(t), x(t− τ))dw(t)

on t ≥ 0 with initial data x0 = ξ, where Ḡ : Rn → Rn, f̄ : R+ ×Rn ×Rn → Rn, and
ḡ : R+×Rn×Rn → Rn×m. As before, assume that equation (6.1) has a unique global
solution denoted by x(t; ξ) and, moreover, Ḡ(0) = 0, f̄(t, 0, 0) = 0, and ḡ(t, 0, 0) = 0.
We now employ Theorem 5.1 to establish one useful corollary.

Corollary 6.1. Assume that there is a constant κ ∈ (0, 1) such that

(6.2) |Ḡ(x)|2 ≤ κ|x|2, x ∈ Rn.

Assume also that there are two positive constants λ1 and λ2 such that

(6.3) 2(x− Ḡ(y))T f̄(t, x, y) + trace[ḡT (t, x, y)ḡ(t, x, y)] ≤ −λ1|x|2 + λ2|y|2

for all t ≥ 0 and x, y ∈ Rn. If

(6.4) 0 < κ <
1

4
and λ1 >

λ2

(1− 2
√
κ)2

,

then the trivial solution of equation (6.1) is exponentially stable in mean square.
This corollary follows directly from Theorem 5.1 since equation (6.1) can be writ-

ten as equation (5.1) by defining

G(ϕ) = Ḡ(ϕ(−τ)), f1(t, x) = f̄(t, x, 0),

f2(t, ϕ) = −f̄(t, ϕ(0), 0) + f̄(t, ϕ(0), ϕ(−τ)), g(t, ϕ) = ḡ(t, ϕ(0), ϕ(−τ))

for t ≥ 0, x ∈ Rn and ϕ ∈ C([−τ, 0];Rn). Of course, we can directly apply
Theorems 3.1 and 4.1 to obtain a more general result. For this purpose, let us intro-
duce another new notation L2

F (Ω;Rn), which is the family of Rn-valued F -measurable
random variables X such that E|X|2 <∞.
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Theorem 6.2. Let (6.2) hold with κ ∈ (0, 1). Let q > (1−
√
κ)−2. Assume that

there is a constant λ > 0 such that

(6.5)

E
(

2(X − Ḡ(Y ))T f̄(t,X, Y ) + trace[ḡT (t,X, Y )ḡ(t,X, Y )]
)

≤ −λE|X − Ḡ(Y )|2

for all t ≥ 0 and those X,Y ∈ L2
F (Ω;Rn) satisfying E|Y |2 < qE|X−Ḡ(Y )|2. Then the

trivial solution of equation (6.1) is exponentially stable in mean square. Furthermore,
if there is a positive constant K such that

(6.6) |f̄(t, x, y)|2 + trace[ḡT (t, x, y)ḡ(t, x, y)] ≤ K(|x|2 + |y|2), x, y ∈ Rn,

then the trivial solution of equation (6.1) is also almost surely exponentially stable.
This theorem follows directly from Theorems 3.1 and 4.1 since equation (6.1) can

be written as equation (2.1) by defining

G(ϕ) = Ḡ(ϕ(−τ)), f(t, ϕ) = f̄(t, ϕ(0), ϕ(−τ)), g(t, ϕ) = ḡ(t, ϕ(0), ϕ(−τ))

for t ≥ 0 and ϕ ∈ C([−τ, 0];Rn).

7. Linear neutral stochastic functional differential equations. As another
application, let us consider a linear neutral stochastic functional differential equation

(7.1) d[x(t)−G(xt)] = [−Ax(t) +B0(xt)]dt+

m∑
i=1

Bi(xt)dwi(t)

on t ≥ 0 with initial data x0 = ξ. Here A is an n× n constant matrix and

G(ϕ) =

∫ 0

−τ
dγ(θ)ϕ(θ), Bi(ϕ) =

∫ 0

−τ
dβi(θ)ϕ(θ)

for ϕ ∈ C([−τ, 0];Rn), 0 ≤ i ≤ m, where γ(θ) = (γkl(θ))n×n, βi(θ) = (βkli (θ))n×n and
all γkl(θ) and βkli (θ) are functions of bounded variation on −τ ≤ θ ≤ 0. Let Vγkl(θ)
denote the total variations of γkl on the interval [−τ, θ] and let Vγ(θ) = ||Vγkl(θ)||.
We can define Vβi(θ) similarly. In particular, let

γ̂ = Vγ(0) and β̂i = Vβi(0), 0 ≤ i ≤ m.

Let us now impose the first assumption:

(7.2) 0 < γ̂ <
1

2
.

Then for any φ ∈ L2
F∞([−τ, 0];Rn),

(7.3) E|G(ϕ)|2 ≤ γ̂E
∫ 0

−τ
dVγ(θ)|ϕ(θ)|2 ≤ γ̂2 sup

−τ≤θ≤0
E|ϕ(θ)|2.

In other words, (3.1) is satisfied with κ = γ̂2. Moreover,

(7.4)

2E
[
|φ(0)||G(φ)|

]
≤ γ̂

1− 2γ̂
E|φ(0)|2 +

1− 2γ̂

γ̂
E|G(φ)|2

≤ γ̂

1− 2γ̂
E|φ(0)|2 + γ̂(1− 2γ̂) sup

−τ≤θ≤0
E|ϕ(θ)|2.
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Similarly, one can show that

(7.5) 2E
[
|φ(0)||B0(φ)|

]
≤ β̂0

1− 2γ̂
E|φ(0)|2 + β̂0(1− 2γ̂) sup

−τ≤θ≤0
E|ϕ(θ)|2,

(7.6) 2E
[
|G(φ)||B0(φ)|

]
≤ 2γ̂β̂0 sup

−τ≤θ≤0
E|ϕ(θ)|2,

and

(7.7)
m∑
i=1

E|Bi(φ)|2 ≤
[ m∑
i=1

β̂2
i

]
sup

−τ≤θ≤0
E|ϕ(θ)|2.

Let λmin(A + AT ) denote the smallest eigenvalue of A + AT . Using (7.4)–(7.7), we
then see that

(7.8)

E

(
2(φ(0)−G(φ))T [−Aφ(0) +B0(φ)] +

m∑
i=1

E|Bi(φ)|2
)

≤ −
[
λmin(A+AT )− γ̂||A||+ β̂0

1− 2γ̂

]
E|φ(0)|2

+

[
(γ̂||A||+ β̂0)(1− 2γ̂) + 2γ̂β̂0 +

m∑
i=1

β̂2
i

]
sup

−τ≤θ≤0
E|φ(θ)|2.

To close this paper, we apply Theorems 5.1 and 4.1 and conclude the following corol-
lary.

Corollary 7.1. Let (7.2) hold. If

λmin(A+AT ) >
2(γ̂||A||+ β̂0)

1− 2γ̂
+

1

(1− 2γ̂)2

[
2γ̂β̂0 +

m∑
i=1

β̂2
i

]
,

then the trivial solution of equation (7.1) is exponentially stable in mean square and
is also almost surely exponentially stable.
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