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Abstract

This paper examines the asymptotic behaviour of the stochastic extension of a fundament
portant population process, namely the Lotka–Volterra model. The stochastic version of this p
appears to have far more intriguing properties than its deterministic counterpart. Indeed, t
that a potential deterministic population explosion can be prevented by the presence of eve
amount of environmental noise shows the high level of difference which exists between the
representations.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Deterministic subclasses of the Lotka–Volterra model are well-known and have
extensively investigated in the literature concerning ecological population modelling
particularly interesting subclass describes the facultative mutualism of two species,
each one enhances the growth of the other, represented through the deterministic eq

ẋ1(t) = x1(t)
[
b1 − a11x1(t)+ a12x2(t)

]
,

ẋ2(t) = x2(t)
[
b2 − a22x2(t)+ a21x1(t)

]
(1)
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for a12 anda21 positive constants. The associated dynamics have been developed
example, Boucher [1], He and Gopalsamy [2] and Wolin and Lawlor [9]. Now in o
to avoid having a solution that explodes at a finite time,a12a21 is required to be smalle
thana11a22. To illustrate what happens when the latter condition does not hold, sup
that a11 = a22 = α anda12 = a21 = β (i.e., we have a symmetric system) andα2 < β2.
Moreover, let us assume thatb1 = b2 = b � 1 and that both species have the same in
value x1(0) = x2(0) = x0 > 0. Then the resulting symmetry reduces system (1) to
single deterministic differential equation

ẋ(t) = x(t)
[
b + (−α + β)x(t)

]
whose solution is given by

x(t) = b

−(−α + β)+ b+(−α+β)x0
x0

e−bt
.

Now the assumption thatα2 < β2 causesx(t) to explode at the finite timet = 1
b
{ln(b +

[−α+β]x0)− ln([−α+β]x0)}. Nevertheless, this can be avoided, even when the cond
a12a21< a11a22 does not hold, by introducing (stochastic) environmental noise.

Let (Ω,F , {Ft}t�0,P ) be a complete probability space with filtration{Ft }t�0 satisfy-
ing the usual conditions, i.e., it is increasing and right continuous whileF0 contains all
P -null sets (see Mao [6]). Moreover, letw(t) be a one-dimensional Brownian motion d
fined on the filtered space and
n+ = {x ∈ 
n: xi > 0 for all 1� i � n}. Finally, denote

the trace norm of a matrixA by |A| =√
trace(AT A) (whereAT denotes the transpose

a vector or matrixA) and its operator norm by‖A‖ = sup{|Ax|: |x| = 1}.
Now consider a Lotka–Volterra model for a system withn interacting components

which corresponds to the case of facultative mutualism, namely

ẋi(t) = xi(t)

(
bi +

n∑
j=1

aij xj

)
, 1� i � n.

This equation can be rewritten in the matrix form

ẋ(t) = diag
(
x1(t), . . . , xn(t)

)[
b +Ax(t)

]
, ∀t � 0, (2)

wherex(t) = (x1(t), . . . , xn(t))
T , b = (bi)1×n andA = (aij )n×n. Stochastically perturbin

each parameter

aij → aij + σij ẇ(t)

results in the new stochastic form

ẋ(t) = diag
(
x1(t), . . . , xn(t)

)[(
b +Ax(t)

)
dt + σx(t) dw(t)

]
, ∀t � 0. (3)

Hereσ = (σij )n×n, and we impose the condition

(H1)

{
σii > 0, if 1 � i � n,

σij � 0, if i �= j .

For a stochastic differential equation to have a unique global solution (i.e., no exp
in a finite time) for any given initial value, the coefficients of Eq. (2) are generally requ
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to satisfy both the linear growth condition and the local Lipschitz condition (cf. [3–
However, the coefficients of Eq. (3) do not satisfy the linear growth condition, th
they are locally Lipschitz continuous, so the solution of Eq. (3) may explode at a
time. Under the simple hypothesis (H1), the following theorem shows that this solut
positive and global.

Theorem 1 (Mao et al. [8]).Let us assume that hypothesis (H1) holds. Then, for any system
parameters b ∈ 
n, A ∈ 
n×n and any given initial value x0 ∈ 
n+, there is a unique
solution x(t) to Eq. (3) on t � 0. Moreover, this solution remains in 
n+ with probability 1,
namely x(t) ∈ 
n+ for all t � 0 almost surely.

The above result reveals the important role that environmental noise plays in popu
dynamics. The idea that even a tiny amount of stochastic noise can suppress an im
deterministic explosion in a number of co-habiting species brings a whole new dime
into the study of population modelling.

2. Asymptotic moment estimation

Since Eq. (3) does not have an explicit solution, the study of asymptotic moment b
iour is essential if we are to gain a deeper understanding of the underlying proces
paper is essentially a continuation of the moment results derived by Mao et al. [8].

Theorem 2. Let the system parameters b ∈ 
n and A ∈ 
n×n be given, and assume that
hypothesis (H1) holds. Then, for any θ ∈ (0,1), there exists a positive constant Kθ such
that, for any initial value x0 ∈ 
n+, the solution of Eq. (3) has the property

lim sup
t→∞

1

t
E

[ t∫
0

n∑
i=1

x2+θ
i (s) ds

]
� Kθ. (4)

Proof. Define aC2-functionV :
n+ → 
+ by

V (x) =
n∑

i=1

xθ
i .

According to Itô’s formula,

dV
(
x(t)

)=
[

n∑
i=1

θxi

(
bi +

n∑
j=1

aij xj

)
+ 1

2

n∑
i=1

θ(θ − 1)xθ
i

(
n∑

j=1

xjσij

)2]
dt

+
n∑

θxθ
i

n∑
σij xj dw(t).
i=1 j=1



144 X. Mao et al. / J. Math. Anal. Appl. 287 (2003) 141–156

n

Moreover, it is easy to show that

n∑
i=1

θxi

(
bi +

n∑
j=1

aij xj

)
�

n∑
i=1

θxi |bi | +
n∑

i=1

n∑
j=1

|aij |xixj

and

n∑
i=1

θ(1− θ)xθ
i

(
n∑

j=1

xjσij

)2

�
n∑

i=1

θ(1− θ)x2+θ
i σ 2

ii .

As a result, we obtain

dV
(
x(t)

)
�
[
θ

n∑
i=1

|bi|xi +
n∑

i=1

n∑
j=1

|aij |xixj − θ(1− θ)

2

n∑
i=1

σ 2
iix

2+θ
i

]
dt

+ θ

n∑
i=1

xθ
i

n∑
j=1

σij xj dw(t). (5)

Furthermore, by taking into consideration that fact that the polynomial

θ

n∑
i=1

|bi|xi +
n∑

i=1

n∑
j=1

|aij |xixj − θ(1− θ)

4

n∑
i=1

σ 2
iix

2+θ
i

has an upper positive bound, sayKθ , inequality (5) yields

V
(
x(t)

)+ θ(1− θ)

4

t∫
0

n∑
i=1

σ 2
iix

2+θ
i ds � V

(
x(0)

)+
t∫

0

Kθ ds +M(t), (6)

where

M(t) = θ

t∫
0

n∑
i=1

xθ
i

n∑
j=1

σij xj dw(s)

is a real-valued continuous local martingale vanishing att = 0. Taking expectations o
both sides of (6) then results in

E

[ t∫
0

n∑
i=1

x2+θ
i ds

]
� 4

σ̂ θ(1− θ)

(
V
(
x(0)

)+Kθt
)
,

where

σ̂ = min
{
σ 2
ii , 1 � i � n

}
.

The required assertion (4) follows immediately.✷
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Theorem 3. Let us assume that hypothesis (H1) holds. Moreover, let the system parameters
b ∈ 
n, A ∈ 
n×n and the initial value x0 ∈ 
n+ be given. Then, there exists a K > 0, which
is independent of x0 but not necessarily of the system parameters, such that

lim sup
t→∞

1

t

[
ln

(
n∏

i=1

xi(t)

)
+ 1

4
λmin(σ

T σ )

t∫
0

∣∣x(s)∣∣2 ds
]

� K a.s., (7)

where λmin(σ
T σ ) is the smallest eigenvalue of the matrix σT σ .

Proof. For each 1� i � n, applying Itô’s formula to ln(xi(t)) results in

d ln
(
xi(t)

)=
[
bi +

n∑
j=1

aij xj − 1

2

(
n∑

j=1

σij xj

)2]
dt +

n∑
j=1

σij xj dw(t),

which implies that

ln
(
xi(t)

)= ln
(
xi(0)

)+
t∫

0

[
bi +

n∑
j=1

aij xj − 1

2

(
n∑

j=1

σij xj

)2]
ds +Mi(t), (8)

where

Mi(t) =
t∫

0

n∑
j=1

σij xj dw(s)

is a real-valued continuous local martingale vanishing att = 0 with quadratic form

〈
Mi(t),Mi(t)

〉=
t∫

0

(
n∑

j=1

σij xj

)2

ds.

Fix ε ∈ (0, 1
2) arbitrarily. For every integerk � 1, using the exponential martingale inequ

ity (cf. Mao [6, Theorem 1.7.4]) we have

P

{
sup

0�t�k

[
Mi(t)− ε

2

〈
Mi(t),Mi(t)

〉]
>

2

ε
lnk

}
� 1

k2 .

An application of the well-known Borel–Cantelli lemma yields that, with probability o

sup
0�t�k

[
Mi(t) − ε

2

〈
Mi(t),Mi(t)

〉]
� 2

ε
lnk

holds for all but finitely manyk. In other words, there exists anΩi ⊂ Ω with P(Ωi) = 1
such that for anyω ∈ Ωi an integerki = ki(ω) can be found such that

Mi(t) � ε 〈
Mi(t),Mi(t)

〉+ 2
lnk, 0 � t � k,
2 ε
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for anyk � ki(ω). Thus Eq. (8) results in

ln
(
xi(t)

)
� ln

(
xi(0)

)+
t∫

0

[
bi +

n∑
j=1

aij xj − 1− ε

2

(
n∑

j=1

σij xj

)2]
ds + 2

ε
lnk (9)

for 0 � t � ki(ω) and k � ki(ω) wheneverω ∈ Ωi . Now let Ω0 = ⋂n
i=1Ωi . Clearly

P(Ω0) = 1. Moreover, for anyω ∈ Ω0, let k0(ω) = max{ki(ω): 1 � i � n}. Then, for
anyω ∈ Ω0, it follows from (9) that

n∑
i=1

ln
(
xi(t)

)
�

n∑
i=1

ln
(
xi(0)

)

+
t∫

0

n∑
i=1

[
bi +

n∑
j=1

aij xj − 1− ε

2

(
n∑

j=1

σij xj

)2]
ds + 2n

ε
ln k

for all 0 � t � k andk � k0(ω). Note that
∑n

i=1(
∑n

j=1σij xj )
2 = |σx|2. Thus

ln

(
n∏

i=1

xi(t)

)
+
(

1

4
− ε

2

) t∫
0

|σx|2ds

� ln

(
n∏

i=1

xi(0)

)
+

t∫
0

(
n∑

i=1

[
bi +

n∑
j=1

aij xj

]
− 1

4
|σx|2

)
ds + 2n

ε
lnk.

Since
n∑

i=1

[
bi +

n∑
j=1

aij xj

]
− 1

4
|σx|2 � K,

for some positive constantK, it follows that forω ∈ Ω0 we have

ln

(
n∏

i=1

xi(t)

)
+
(

1

4
− ε

2

) t∫
0

|σx|2ds � ln

(
n∏

i=1

xi(0)

)
+Kt + 2n

ε
lnk,

for 0 � t � k andk � ki(ω). Consequently, for anyω ∈ Ω0, if k − 1 � t � k andk � k(ω),

1

t

[
ln

(
n∏

i=1

xi(t)

)
+ 1− 2ε

4

t∫
0

|σx|2ds
]

� ln(
∏n

i=1 xi(0))

k − 1
+K + 2n

ε(k − 1)
lnk,

which implies that

lim sup
t→∞

1

t

[
ln

(
n∏

i=1

xi(t)

)
+ 1− 2ε

4

t∫
0

|σx|2ds
]

� lim sup

[
ln(
∏n

i=1xi(0))

k − 1
+ 2n

ε(k − 1)
lnk +K

]
= K
k→∞



X. Mao et al. / J. Math. Anal. Appl. 287 (2003) 141–156 147

le
almost surely. On noting that|σx|2 = xT σT σx � λmin(σ
T σ )|x|2, it then follows that

lim sup
t→∞

1

t

[
ln

(
n∏

i=1

xi(t)

)
+ λmin(σ

T σ )
1− 2ε

4

t∫
0

∣∣x(s)∣∣2ds
]

� K a.s.

Lettingε tend to zero yields the required assertion.✷
Theorem 4. Let us assume that hypothesis (H1) holds. Then, for any system parameters
b ∈ 
n, A ∈ 
n×n and any initial value x0 ∈ 
n+,

lim sup
t→∞

ln(
∏n

i=1 xi(t))

ln(t)
� n a.s. (10)

Proof. For each 1� i � n, applying Itô’s formula toeγ t ln(xi(t)) for γ > 0 results in

eγ t ln
(
xi(t)

)= ln
(
xi(0)

)+
t∫

0

eγ s

[
bi +

n∑
j=1

aij xj − 1

2

(
n∑

j=1

σij xj

)2]
ds

+ γ

t∫
0

eγ s ln
(
xi(s)

)
ds +Mi(t), (11)

where

Mi(t) =
t∫

0

eγ s
n∑

j=1

σij xj dw(s)

is a real-valued continuous local martingale vanishing att = 0 with quadratic form

〈
Mi(t),Mi(t)

〉=
t∫

0

e2γ s

(
n∑

j=1

σij xj

)2

ds.

Fix anyε ∈ (0,1) andθ > 1. For every integerk � 1, on using the exponential martinga
inequality we have

P

{
sup

0�t�k

[
Mi(t)− ε

2
e−γ k

〈
Mi(t),Mi(t)

〉]
>

θeγ k

ε
lnk

}
� 1

kθ
.

By the Borel–Cantelli lemma we observe that there exists anΩi ⊂ Ω with P(Ωi) = 1 such
that for anyω ∈ Ωi an integerki = ki(ω) can be found such that

Mi(t) � ε

2
e−γ k

〈
Mi(t),Mi(t)

〉+ θeγ k

ε
lnk

for all 0 � t � k andk � ki(ω). Thus Eq. (11) leads to
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eγ t ln
(
xi(t)

)
� ln

(
xi(0)

)+ γ

t∫
0

eγ s ln
(
xi(s)

)
ds

+
t∫

0

eγ s

[
bi +

n∑
j=1

aij xj − 1

2

(
n∑

j=1

σij xj

)2]
ds

+ ε

2
e−γ k

t∫
0

e2γ s

(
n∑

j=1

σij xj

)2

ds + θeγ k

ε
lnk

for 0 � t � k andk � ki(ω) wheneverω ∈ Ωi , which can be rewritten as

eγ t ln
(
xi(t)

)
� ln

(
xi(0)

)

+ γ

t∫
0

eγ s

[
bi +

n∑
j=1

aij xj − 1− εe−γ (k−s)

2

(
n∑

j=1

σij xj

)2]
ds

+ θeγ k

ε
lnk +

t∫
0

eγ s ln
(
xi(s)

)
ds. (12)

Now let Ω0 =⋂n
i=1Ωi . ClearlyP(Ω0) = 1. Moreover, for anyω ∈ Ω0, let k0(ω) =

max{ki(ω): 1 � i � n}. Then, for anyω ∈ Ω0, it follows from (12) that

eγ t ln

(
n∏

i=1

xi(t)

)
�

n∑
i=1

ln
(
xi(0)

)

+
t∫

0

eγ s
n∑

i=1

[
bi +

n∑
j=1

aij xj − 1− εe−γ (k−s)

2

(
n∑

j=1

σij xj

)2]
ds

+ nθeγ k

ε
lnk + γ

t∫
0

eγ s
n∑

i=1

ln
(
xi(s)

)
ds

for all 0 � t � k andk � k0(ω). Since for positive constantK

n∑
i=1

[
bi +

n∑
j=1

aij xj − 1

2

(
n∑

j=1

σij xj

)2

+ γ ln(xi)

]
� K, ∀x ∈ 
n+,

we have

eγ t ln

(
n∏

xi(t)

)
� ln

(
n∏

xi(0)

)
+ K

γ
eγ t − K

γ
+ nθeγ k

ε
ln k
i=1 i=1
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Fig. 1. A sample path of[ln(∏2
i=1 xi (t))]/ ln(t) produced by generating 106 points with time step∆ = 10−5 and

initial conditionx1(0) = x2(0) = 50.

for all 0 � t � k andk � k0(ω). Consequently, for anyω ∈ Ω0, if (k − 1) � t � k and
k � k(ω), it follows that

ln(
∏n

i=1xi(t))

ln(t)
� 1

ln(k − 1)

[
e−γ (k−1) ln

(
n∏

i=1

xi(0)

)
+ K

γ
+ nθeγ

ε
lnk

]
,

which implies that

lim sup
t→∞

ln(
∏n

i=1 xi(t))

ln(t)
� nθeγ

ε
a.s.

By letting ε → 1, θ → 1 andγ → 0, we then obtain

lim sup
t→∞

ln(
∏n

i=1 xi(t))

ln(t)
� n a.s.

as required. ✷
Figure 1 illustrates the above theoretical results by highlighting the “bounded” n

of the process (herebi = 1,aij = 1 andσij = 10 for everyi, j = 1,2). Note the controlling
influence of the downward surges.

The conclusion of Theorem 4 is very powerful since it is universal in the sense tha
independent both of the system parametersb ∈ 
n andA ∈ 
n×n, and of the initial value
x0 ∈ 
n+. It is also independent of the noise intensity matrixσ as long as the noise exis
in the sense of hypothesis (H1). However, since estimation is based on the multipl∏n

i=1 xi(t), it would be better to use instead the norm|x(t)|. To do so we need addition
conditions on the noise intensity matrix.

4. Pathwise estimation with additional conditions imposed on σ

Improved results concerning the pathwise behaviour of the solution can be achie
introducing somewhat more restrictive assumptions. A numerical example given at t
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ons is
of this section shows that applying our theoretical results to specific practical situati
a relatively simple procedure.

Consider a new hypothesis in which we assume the existence of two constantsλ andρ,
with 2ρ > λ, such that

(H2)

{
|diag(x1, . . . , xn)σx|2 � λ|x|4, ∀x ∈ 
n+,

|xT diag(x1, . . . , xn)σx|2 � ρ|x|6, ∀x ∈ 
n+.

Then we can use this to develop a new suite of theorems.

Theorem 5. Let us assume that hypothesis (H1) holds, and that there exist two positive
constants λ and ρ, with 2ρ > λ, such that hypothesis (H2) also holds. Moreover, let the
system parameters b ∈ 
n, A ∈ 
n×n and the initial value x0 ∈ 
n+ be given. Then, with
probability 1,

lim sup
t→∞

1

t

[
δ

2ρ − λ
ln
(∣∣x(t)∣∣2)+

t∫
0

∣∣x(s)∣∣2ds
]

� nµ2δ2

(δ − 1)(2ρ − λ)2
+ 2µδ

2ρ − λ
,

(13)

where µ = max{|aij |, |bi|: 1 � i, j � n} and

δ = nµ+ 2+ √
nµ(nµ+ 2)

nµ+ 2
.

Proof. Define aC2-functionV :
n+ → 
+ by

V (x) = ln
(|x|2).

Then applying Itô’s formula yields

dV
(
x(t)

)= 2

|x|2x
T diag(x1, . . . , xn)(b +Ax)dt

+ 1

|x|2 trace

{∣∣diag(x1, . . . , xn)σx
∣∣2

− 2

|x|4
∣∣xT diag(x1, . . . , xn)σx

∣∣2}dt

+ 2

|x|2x
T diag(x1, . . . , xn)σx dw(t). (14)

Now Eq. (14) can be rewritten in the form

dV
(
x(t)

)=
{

2

|x|2
[

n∑
i=1

bix
2
i +

n∑
i=1

x2
i

n∑
j=1

aij xj

]

+ 1

|x|2
(

n∑
x2
i

n∑
σij xj

)2

− 2

|x|4
(

n∑
x2
i

n∑
σij xj

)2}
dt
i=1 j=1 i=1 j=1
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eger

t for
+ 2

|x|2
n∑

i=1

x2
i

n∑
j=1

σij xj dw(t).

Moreover, taking into account that

0<

(
n∑

i=1

xi

)2

�
n∑

i=1

12
n∑

i=1

x2
i ⇒

n∑
i=1

xi �
√
n |x|

results in

1

|x|2x
T diag(x1, . . . , xn)(b +Ax) � µ

(√
n |x| + 1

)
, ∀x ∈ 
n+,

whereµ = max{|aij |, |bi|: 1 � i, j � n}. Consequently, Eq. (14) becomes

V
(
x(t)

)
� V

(
x(0)

)+
t∫

0

[
2µ
(√

n |x| + 1
)+ λ|x|2]ds

−
t∫

0

2

|x|4
∣∣xT diag(x1, . . . , xn)σx

∣∣2ds +M1(t), (15)

where

M1(t) =
t∫

0

2

|x|2
n∑

i=1

x2
i

n∑
j=1

σij xj dw(s) =
t∫

0

2

|x|2x
T diag(x1, . . . , xn)σx dw(s)

is a real-valued continuous local martingale vanishing att = 0 with quadratic form

〈
M1(t),M1(t)

〉=
t∫

0

4

|x|4
∣∣xT diag(x1, . . . , xn)σx

∣∣2ds.
Fix any ε > 0. By the exponential martingale inequality we have that for every int
k � 1

P

{
sup

0�t�k

[
M1(t)− ε

4

〈
M1(t),M1(t)

〉]
> 4

lnk

ε

}
� k−2.

Since
∑∞

k=1 k
−2 converges, the application of the Borel–Cantelli lemma proves tha

almost allω ∈ Ω there exists a random integerk0(ω) such that for allk � k0(ω)

sup
0�t�k

(
M1(t)− ε

4

〈
M1(t),M1(t)

〉)
� 4 lnk

ε
,

which implies

M1(t) � ε 〈
M1(t),M1(t)

〉+ 4 lnk
on 0� t � k.
4 ε
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ts, we
By taking into consideration inequality (15), assumption (H2), and the above resul
then obtain

V
(
x(t)

)
� V

(
x(0)

)+
t∫

0

[
2µ
(√

n |x| + 1
)− (2ρ − λ− ερ)|x|2]ds + 4 lnk

ε
.

Now, since 2ρ > λ, we can chooseε small enough to ensure that 2ρ − ερ > λ. Thus, for
anyδ > 1, we have the inequality

2µ
(√

n |x| + 1
)− (δ − 1)(2ρ − λ)

δ
|x|2 � nµ2δ

(δ − 1)(2ρ − λ)
+ 2µ.

As a result, we obtain

V
(
x(t)

)+
(

2ρ − λ

δ
− ερ

) t∫
0

∣∣x(s)∣∣2ds
� V

(
x(0)

)+
[

nµ2δ

(δ − 1)(2ρ − λ)
+ 2µ

]
t + 4 lnk

ε
on 0� t � k.

In particular, for almost allω ∈ Ω , if k − 1 � t � k andk � k0(ω), it follows that

1

t

[
V
(
x(t)

)+
(

2ρ − λ

δ
− ερ

) t∫
0

∣∣x(s)∣∣2ds
]

� 1

k − 1

[
V
(
x(0)

)+ 4 lnk

ε

]
+
[

nµ2δ

(δ − 1)(2ρ − λ)
+ 2µ

]
k

k − 1
.

Whence lettingt → ∞ (sok → ∞), and thenε → 0, results in

lim sup
t→∞

1

t

[
δ

2ρ − λ
ln
(∣∣x(t)∣∣2)+

t∫
0

∣∣x(s)∣∣2ds
]

� nµ2δ2

(δ − 1)(2ρ − λ)2
+ 2µδ

2ρ − λ
.

Since the right-hand side of this equation is minimised when

δ = nµ+ 2+ √
nµ(nµ+ 2)

nµ+ 2
,

the required assertion follows.✷
Theorem 6. Let us assume that hypothesis (H1) holds, and that there exist two positive
constants λ and ρ, with 2ρ > λ, such that hypothesis (H2) also holds. Moreover, let the
system parameters b ∈ 
n, A ∈ 
n×n and the initial value x0 ∈ 
n+ be given. Then, with
probability 1,

lim sup
t→∞

ln(|x(t)|)
ln(t)

� ρ

2ρ − λ
. (16)



X. Mao et al. / J. Math. Anal. Appl. 287 (2003) 141–156 153

lity
Proof. Let us define the followingC2-functionV :
n+ × 
+ → 
+ such that

V (x, t) = et ln
(|x|2).

Then applying Itô’s formula yields

dV
(
x(t), t

)= et ln
(|x|2)+ et

2

|x|2x
T diag(x1, . . . , xn)(b +Ax)dt

+ et
1

|x|2 trace

{∣∣diag(x1, . . . , xn)σx
∣∣2

− 2

|x|4
∣∣xT diag(x1, . . . , xn)σx

∣∣2}dt

+ et
2

|x|2x
T diag(x1, . . . , xn)σx dw(t). (17)

Moreover, it is easy to show that

1

|x|2x
T diag(x1, . . . , xn)(b +Ax) � µ

(√
n |x| + 1

)
, ∀x ∈ 
n+,

whereµ = max{|aij |, |bi: 1 � i, j � n}. As a result, Eq. (17) yields

V
(
x(t), t

)
� V

(
x(0),0

)+
t∫

0

es ln
(∣∣x(s)∣∣2)ds

+
t∫

0

es
[
2µ
(√

n
∣∣x(s)∣∣+ 1

)+ λ
∣∣x(s)∣∣2]ds

−
t∫

0

es
2

|x(s)|4
∣∣xT diag

(
x1(s), . . . , xn(s)

)
σx(s)

∣∣2 ds +M1(t), (18)

where

M1(t) =
t∫

0

es
2

|x(s)|2x
T diag

(
x1(s), . . . , xn(s)

)
σx(s) dw(s)

is a real-valued continuous local martingale vanishing att = 0 with quadratic form

〈
M1(t),M1(t)

〉=
t∫

0

4e2s

|x(s)|4
∣∣xT (s)diag

(
x1(s), . . . , xn(s)

)
σx(s)

∣∣2ds.
Given anyε > 0, θ > 1 andα > 0, on exploiting the exponential martingale inequa
once again, we can show that for almost allω ∈ Ω there exists a random integerk0(ω)

such that, for all integerk � k0(ω),

M1(t) � εe−kα 〈
M1(t),M1(t)

〉+ 2θekα lnk
, for all 0 � t � kα.
4 ε
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s, we

at
n-

at the
trates
By taking into consideration inequality (18), hypothesis (H2), and the above result
then obtain

V
(
x(t), t

)
� V

(
x(0),0

)+
t∫

0

es ln
(∣∣x(s)∣∣2)ds +

t∫
0

es
[
2µ
(√

n
∣∣x(s)∣∣+ 1

)

− (2ρ − λ − εe−(kα−s)ρ)
∣∣x(s)∣∣2]ds + 2θekα lnk

ε
(19)

for all 0 � t � kα. Now, since 2ρ > λ, we can chooseε small enough to ensure th
(2 − ε)ρ > λ, namely, chooseε ∈ (0, (2ρ − λ)/ρ). Moreover, there exists a positive co
stantκ such that

ln
(|x|2)+ 2µ

(√
n |x| + 1

)− (2ρ − λ − ερ)|x|2 � κ, ∀x ∈ 
n+.

Consequently, inequality (19) yields

et ln
(∣∣x(t)∣∣2)� ln

(∣∣x(0)∣∣2)+ κet − κ + 2θekα lnk

ε
on 0� t � kα,

which implies that

ln
(∣∣x(t)∣∣2)� e−t

[
ln
(∣∣x(0)∣∣2)− κ

]+ κ + 2θekα−t lnk

ε
on 0� t � kα.

In particular, for almost allω ∈ Ω , if (k − 1)α � t � kα andk � k0(ω), it follows that

ln(|x(t)|2)
ln(t)

� e−(k−1)α

ln(k − 1)

[
ln
(∣∣x(0)∣∣r2)− κ

]+ κ

ln(k − 1)

+ 2θeα lnk

ε ln(k − 1)
on 0� t � kα.

Whence lettingt → ∞ (sok → ∞ too) yields

lim sup
t→∞

ln(|x(t)|2)
ln(t)

� 2θ

ε
eα a.s.

Finally, by lettingθ → 1,α → 0 andε → (2ρ − λ)/ρ, we obtain

lim sup
t→∞

ln(|x(t)|2)
ln(t)

� 2ρ

2ρ − λ
a.s.

which is the required assertion.✷
Let us now discuss a simple numerical example which not only demonstrates th

set of functions and parameters satisfying hypothesis (H2) is not empty but also illus
the estimation obtained by Theorem 6. Consider the casen = 2 with

b =
(

1
1

)
, A =

(
1 1
1 1

)
and σ =

(
2 1
1 2

)
.

It is easy to see that∣∣diag(x1, x2)σx
∣∣2 � 5|x|4,
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l

otka–
ortant
lations
viour
roperty
cone
rious
since

∣∣diag(x1, x2)σx
∣∣2 =

∣∣∣∣
(
x1 0
0 x2

)(
2 1
1 2

)(
x1
x2

)∣∣∣∣
2

= 4x4
1 + 4x3

1x2 + 2x2
1x

2
2 + 4x1x

3
2 + 4x4

2

and

5|x|4 − ∣∣diag(x1, x2)σx
∣∣2 = x4

1 − 4x3
1x2 + 8x2

1x
2
2 − 4x1x

3
2 + x4

2

= x2
1(x1 − 2x2)

2 + x2
2(x2 − 2x1)

2 � 0.

Similarly, the inequality∣∣xT diag(x1, x2)σx
∣∣2 � 3|x|6

holds, since

∣∣xT diag(x1, x2)σx
∣∣2 =

∣∣∣∣( x1 x2 )

(
x1 0
0 x2

)(
2 1
1 2

)(
x1
x2

)∣∣∣∣
2

= 4x6
1 + 4x5

1x2 + 5x4
1x

2
2 + 10x3

1x
3
2 + 5x2

1x
4
2 + 4x1x

5
2 + 4x6

2

and ∣∣xT diag(x1, x2)σx
∣∣2 − 3|x|6

= x6
1 + 4x5

1x2 − 4x4
1x

2
2 + 10x3

1x
3
2 − 4x2

1x
4
2 + 4x1x

5
2 + x6

2

= (
x3

1 + x3
2

)2 + x1x2
[
x2

1(x1 − 2x2)
2 + x2

2(x2 − 2x1)
2 + 3

(
x4

1 + x4
2

)]
� 0.

We have therefore proved that there exists a pair of parameters,λ = 5 andρ = 3, for the
above specified matrixσ which satisfy hypothesis (H2). As a result, Theorem 6 yields

lim sup
t→∞

ln(|x(t)|)
ln(t)

� 3 a.s. (20)

This means that neither of two species will grow faster than a polynomial (of timet) of
order 3. Figure 2 shows a sample path of ln(|x(t)|)/ln(t) which supports this theoretica
result.

5. Summary

Our aim in this paper is to discuss the asymptotic properties of the stochastic L
Volterra model in populations dynamics. In our earlier paper [8] we revealed an imp
fact that even a tiny amount of stochastic noise can suppress an explosion in popu
dynamics. Due to the page limit we have not investigated in [8] the asymptotic beha
of the stochastic populations dynamics but the theory there guarantees the nice p
that the solution of the stochastic Lotka–Volterra model will remain in the positive
with probability one. Making use of this property we have in this paper designed va
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Fig. 2. A sample path of[ln(|x(t)|)]/ ln(t) produced by generating 106 points with time step∆ = 10−5 and initial
conditionx1(0) = x2(0) = 50.

types of Lyapunov functions to discuss the asymptotic behaviour in some detail. S
moment and pathwise asymptotic estimators are obtained. These essentially enhan
other, so that they can be used to reveal better features of the stochastic Lotka–V
model. Two computer simulations are presented which support the theoretical resul
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