Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Mechanism and kinetics of nanostructure evolution during early stages of resorcinol-formaldehyde polymerisation

Gaca, Katarzyna Z. and Sefcik, Jan (2013) Mechanism and kinetics of nanostructure evolution during early stages of resorcinol-formaldehyde polymerisation. Journal of Colloid and Interface Science, 406. 51–59. ISSN 0021-9797

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Resorcinol and formaldehyde react in aqueous solutions to form nanoporous organic gels well suited for a wide range of applications from supercapacitors and batteries to adsorbents and catalyst supports. In this work, we investigated the mechanism and kinetics of formation of primary clusters in the early stages of formation of resorcinol–formaldehyde gels in the presence of dissolved sodium carbonate. Dynamic Light Scattering measurements showed that size of freely diffusing primary clusters was independent of both reactant and carbonate concentrations at a given temperature, reaching the mean hydrodynamic radius of several nanometres before further changes were observed. However, more primary clusters formed at higher carbonate concentrations, and cluster numbers were steadily increasing over time. Our results indicate that the size of primary clusters appears to be thermodynamically controlled, where a solubility/miscibility limit is reached due to formation of certain reaction intermediates resulting in approximately monodisperse primary clusters, most likely liquid like, similar to formation of micelles or spontaneous nanoemulsions. Primary clusters eventually form a particulate network through subsequent aggregation and/or coalescence and further polymerisation, leading to nanoscale morphologies of resulting wet gels. Analogous formation mechanisms have been previously proposed for several polymerisation and sol–gel systems, including monodisperse silica, organosilicates and zeolites.