
This version is available at https://strathprints.strath.ac.uk/57249/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk
ARTICULATION IN CHILDREN WITH DEVELOPMENTAL SPEECH DISORDERS
Hayo Terband, Frits van Brenk, Lian Nijland and Ben Maassen
Medical Psychology/Pediatric Neurology Centre/ENT, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
Contact: h.terband@kno.umcn.nl. This study was funded by the Netherlands Organization for Scientific Research (NWO).

Introduction
A central issue in studies on developmental speech disorders, especially with regard to childhood apraxia of speech (CAS) and phonological disorder (PD), is the distinction between phonological and motoric processes. Acoustic studies suggest that children with CAS produce incorrect realizations of correctly selected phonemes, whereas the opposite is postulated for children with PD. Thus conceived, the underlying impairment is located at different levels of speech production in these two groups of children.

Aim of the present study
Characterize phonological and motor processes in developmental speech disorders using kinematic and dynamic pattern analyses of speech motor behavior.

Method
Participants
• 14 participants (6 female; 8 male) in 4 groups:
 – CAS (n=4, 6-9.89 years old), Mix (n=3, 6-7.89 years old), PD (n=1, 6.02), and Controls (n=6, 6-3.97 years old).

Task
• Repeat /pa:s/ and /spa:/ at a normal speaking rate.

Data collection
• Electro-Magnetic Articulography (EMMA, Cautions AG100).

Data analysis [van Lieshout et al., 2007]
• Tongue tip and lower lip closing movements:
 – kinematics: amplitude, velocity, duration;
 – dynamics: stiffness (peak velocity/amplitude) and eSTI (cyclic spatial-temporal index) (Fig. 1).

Data analysis [van Lieshout et al., 2007]
• Intralingual and inter-lingual coordination:
 – intra: upper-lower lip (labial clusters);
 – inter: labial clusters-tongue tip;

• Dynamic patterns: mean relative phase and phase variability (Fig. 1).

Results
Kinetimatics (Fig. 2, 3)
• The CAS and Mix groups tend to larger amplitudes, velocity and duration in the closing movements of tongue tip and lower lip.

Table 1: Kinematics and dynamics of tongue tip and lower lip closing movements. * indicates a general effect of group (p<.05, Kruskal-Wallis).

<table>
<thead>
<tr>
<th></th>
<th>CAS</th>
<th>Mix</th>
<th>Control</th>
<th>PD</th>
<th>CAS*</th>
<th>Mix*</th>
<th>Control</th>
<th>PD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion
The results indicate that the motoric realization of speech sounds in CAS is dependent on syllable structure:
• within the syllable, the closing movements of tongue tip and lower lip in the cluster /sp/ are as flexible as controls;
• across syllable borders, these movements are less flexible than controls.

Gestural coordination
• The results show no clear differences in phase variability between intra- and inter-syllabic coordination.

Analysis
• Dynamic pattern analysis of relative phase and phase variability proves to be troublesome with kids and/or consonant clusters.

Question: is the large standard deviation of relative phase and phase variability due to speakers, task, or analysis?

Future research
• Improve tasks and data-collection to further enable dynamic pattern characterization.
• Possible solutions for the analysis of dynamics:
 – metronome-guided speech;
 – different speech tasks (e.g. api/apa, ddk-tasks);
 – record longer sweeps;
 – different dynamic analysis.

FIGURE 1. Dynamic pattern analysis of relative phase and phase variability of an example waveform (top).

FIGURE 2. Kinematic and dynamic parameters by task, groups compared.

FIGURE 3. Scatterplots of amplitude (left) and peak velocity (right) against stiffness, groups differentiated.

TABLE 1. Dynamics of tongue tip and lower lip closing movements. * indicates a general effect of group (p<.05, Kruskal-Wallis).

<table>
<thead>
<tr>
<th></th>
<th>CAS</th>
<th>Mix</th>
<th>Control</th>
<th>PD</th>
<th>CAS*</th>
<th>Mix*</th>
<th>Control</th>
<th>PD*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intralingual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labial clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongue tip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower lip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4. Average relative phase (top) and relative phase variability (bottom).

Context effects
• Previous research using ddk-tasks [van den Berg et al., 2006] found the closing movements of the lower lip of children with CAS to be less flexible (i.e., larger stiffness) than controls.
• The current study confirms these results and extends them for tongue tip closing movements, and at the same time limits them to syllables without consonant clusters.

The results indicate that the motoric realization of speech sounds in CAS is dependent on syllable structure:
• within the syllable, the closing movements of tongue tip and lower lip in the cluster /sp/ are as flexible as controls;
• across syllable borders, these movements are less flexible than controls.

Gestural coordination
• The results show no clear differences in phase variability between intra- and inter-syllabic coordination.

Analysis
• Dynamic pattern analysis of relative phase and phase variability proves to be troublesome with kids and/or consonant clusters.

Discussion: is the large standard deviation of relative phase and phase variability due to speakers, task, or analysis?

Future research
• Improve tasks and data-collection to further enable dynamic pattern characterization.
• Possible solutions for the analysis of dynamics:
 – metronome-guided speech;
 – different speech tasks (e.g. api/apa, ddk-tasks);
 – record longer sweeps;
 – different dynamic analysis.